
Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles

Felix Widmaier1,2, Daniel Kappler1, Stefan Schaal1,3, Jeannette Bohg1

Abstract— To achieve accurate vision-based control with
a robotic arm, a good hand-eye coordination is required.
However, knowing the current configuration of the arm can
be very difficult due to noisy readings from joint encoders or
an inaccurate hand-eye calibration. We propose an approach
for robot arm pose estimation that uses depth images of
the arm as input to directly estimate angular joint positions.
This is a frame-by-frame method which does not rely on
good initialisation of the solution from the previous frames or
knowledge from the joint encoders. For estimation, we employ
a random regression forest which is trained on synthetically
generated data. We compare different training objectives of
the forest and also analyse the influence of prior segmentation
of the arms on accuracy. We show that this approach improves
previous work both in terms of computational complexity and
accuracy. Despite being trained on synthetic data only, we
demonstrate that the estimation also works on real depth
images.

I. INTRODUCTION

For autonomous, robotic grasping and manipulation,
knowing the current pose of the robot’s manipulator is
important to achieve a good hand-eye coordination. Given the
kinematics of the arm and the current joint angles, the pose of
each link relative to the camera can be computed. However,
getting good estimates for these angles can be difficult as
position encoders may have considerable inaccuracies de-
pending on the robot. An example for this is the ARM robot
[1], which has encoders in the motors which are located in
the shoulders but not directly at the joints. Estimation of the
joint positions is thus prone to inaccuracies due to variable
cable stretch (see Fig. 1). Therefore, additional techniques
for improving the estimated arm pose are necessary.

This paper presents an approach of frame-by-frame joint
angle estimation using depth images as input. It does not
require initialization of the solution from e.g. previous frames
or joint encoder readings. It is therefore also not prone to an
bad initial guess and can immediately recover when losing
track of the arm in some frames. Estimation is done with
a Random Forest (RF) which is trained on synthetically
rendered depth images from which large annotated training
sets can be easily built. We analyse the influence of different
training objectives on the accuracy of the RF. Apart from the
standard mean squared error (MSE) training objective, we
also use the specialized DISP distance [2]. This is a model-
dependent metric for rigid and articulated body displacement
that measures distance in configuration space. Moreover, we
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Fig. 1. Visualization of the encoder error. The blue outline shows the
estimated pose of the arm based on the encoder readings. The considerable
error between estimated and real arm pose makes any fine manipulation task
very challenging. The error increases if there is an additional load applied
at the end-effector.

show that further improvement can be gained by using a
second RF for prior foreground segmentation of the images.

The approach presents an improvement of our previous
work [3] where we use an RF optimized on the proxy-
objective of pixel-wise part classification. By retrofitting the
leaf nodes of the classification forest, 3D joint positions can
be estimated in the test images. These then serve as the
basis to compute the final kinematically feasible robot arm
pose. The approach presented in this paper simplifies the
estimation by directly training the RF on the desired joint
angles instead of part labels.

This reduces the number of intermediate steps as instead
of collecting and clustering position votes for all joints to
iteratively find an optimal solution for the arm configuration
that matches the position estimates, we directly collect arm
configuration votes which only have to be combined by a
confidence-weighted mean. In the experimental section, we
show that this also improves the estimation accuracy.

A. Related Work
Robust, accurate and real-time visual tracking of the robot

arm is a long-standing problem. Often markers are attached
to the arm to simplify detection [4], [5]. One has to take
care, however, that these markers are always in sight of
the camera which may constraint the possible arm poses.
Another approach is to use a 3D model of the robot to detect
the arm in the image without the need for markers [6]–[9].
These are often variants of Iterative Closest Points (ICP), i.e.
local optimization methods that require a good initialization.

RFs [10] have been successfully applied to a wide range of
vision problems [11]–[17]. They can naturally handle multi-
class problems and are comparatively fast which makes them
suitable for real-time applications. In [3] a classification RF
is used for robot arm pose estimation based on single depth
images. The forest is trained for pixel-wise classification
of robot arms parts. By retrofitting the leaf nodes, they
contain votes for relative 3D joint axis positions. At test



time, these votes are cast per pixel. The 3D joint axis
positions are estimated by clustering in the voting space.
Given these, a virtual arm is optimally aligned with these
positions through inverse kinematics to yield the final joint
angles. In [18] a similar approach to estimate the pose of
various articulated models is proposed. The authors train an
RF to estimate object part labels. Then they sample a set
of joint configurations given the retrofitted leafs of the RF
and evaluate how well they fit the depth image. The best
hypothesis is then refined. These refinement may be more
accurate but also computationally more expensive compared
to the approach in in [3], as the whole depth image is
considered instead of only a few 3D joint axes positions.

In this paper, we improve our previous approach [3] by
training a regression RF directly on the arm poses. This
requires a metric to measure the distance between different
poses. Defining such a metric is non-trivial as translation and
rotation have different units and are therefore not directly
comparable. This can be solved by using metrics which
take the model of the object into account [2], [19]–[23]. In
this paper, we compare the performance of such a model-
based metric (the DISP distance [2]) to the simple Euclidean
distance in the configuration space of the arm. While the
former takes the geometry and kinematics of the robot arm
into account, the latter is agnostic to the geometry of the
problem.

B. Main Contribution

We present an approach for robot arm pose estimation
that uses an RF to directly regress to joint angles instead of
using a proxy objective such as part-based classification. As
opposed to the dominant approach taken in related work,
the method uses single depth images and does not need
any initialization or knowledge about former frames. It
outperforms our previous work [3] both in terms of accuracy
and efficiency. We also analyze the influence of different
objective functions for the RF-training on performance of the
approach. While the proposed method works on unprepro-
cessed depth images, we show that prior segmentation using
a second RF can be beneficial to further increase accuracy.

II. PROBLEM DESCRIPTION AND FOUNDATIONS

We want to estimate a function f(I) that takes a depth
image I of the robot arm as input and returns a vector y
of joint angles. To find f , a regression RF is trained using
annotated training data {(I1,y1), . . . , (In,yn)}. The RF
takes a feature vector computed on the area around a single
pixel as input and returns an estimated arm configuration ŷ.
It is applied on each pixel and the results are combined as
will be described in Sec. III.

A. Random Regression Forests

RFs are ensembles of decision trees, which are trained
independently of each other on overlapping subsets of the
whole training set. In the following, we give a brief descrip-
tion of RFs that will provide the basis to understand the

modifications that are described in Sec. III-B. For a more
in-depth review, we refer to [10].

For training one decision tree, the training samples S are
hierarchically split at each node into two distinct subsets
Sl, Sr, such that the samples ending up in the same leaf
node are as similar as possible in terms of the target value.
To achieve this, at each node a set X = (�1, · · · ,�s) of
randomly chosen split candidates is evaluated to find the
candidate �⇤ that maximizes the objective function:
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with � and H(S) is an impurity function that is smaller, the
more similar the elements of S are. The concrete definition
of H(S) depends on the split criterion that is used. The
different criteria used in this paper are defined in Sec. III-B.

As output value of each leaf node, we use the mean of
all associated training samples. Intuitively, this arm pose
prediction shall be considered less confident, the higher the
variance in the arm configurations as represented by the
sample set. Therefore, we also compute a confidence value
c for each leaf based on their impurity H(Sleaf). We use a
radial basis function (RBF) kernel on the scaled impurity:

c = exp
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The scaling factor ⌫ is set to the maximum leaf impurity
to normalize the impurities to a fixed range over the whole
forest. The bandwidth � controls the range of impurity values
that result in high confidences. For our experiments we set
� = 1. However, we found that the performance of the
method is not sensitive to the choice of this parameter.

At test time, the given data point computed around a
pixel in the depth image traverses each tree in the forest,
following the split rules learned at training time. Each tree
returns the value and confidence stored at the final leaf. The
pose estimate of the forest for this data point is computed as
the confidence-weighted mean of the estimates of the single
trees. As a confidence measure of the forest prediction for
this particular pixel, the average confidence over the single
trees is used.

B. DISP Distance
For training of the RF, we need a metric to measure the

distance between two training samples. A common choice
is the Euclidean distance, which is simple and fast to
compute. Using the Euclidean distance on the angular joint
configurations of a robot arm can have undesired effects,
as is illustrated in Fig. 2. Therefore, in addition to the
Euclidean distance we implemented the model-dependent
DISP distance [2]. It is defined as follows:

DISPM (y1,y2) = max

p2M
kp(y1)� p(y2)k2 (3)

where M is the given robot model, p 2 M is a point on
this model, y1,y2 are the two configuration samples and



Fig. 2. Euclidean vs. DISP distance. In both examples only one joint is
moved by 45°. The Euclidean distance on the angles is the same in both
cases. However, the actual displacement of the end-effector varies a lot. The
DISP distance, visualized by the red line, reflects this much better.

p(yi) denotes the position of point p when the model is in
configuration yi. In Fig. 2, the DISP distance is visualized
by the red line. For faster computation of the DISP distance,
we use the C-DIST algorithm as proposed in [2].

III. METHOD

A. Depth Features

We use the same type of depth features as in [3]. They
are a simplified version of the ones used in [15] and are
similar to the well known BRIEF features [24]. Our features
are defined as follows:

'i(I,p) = I(p+ �u)� I(p+ �v) (4)

where I(p) denotes the depth value of pixel p in image I .
If p has an invalid measurement or is lying outside of the
image, I(p) is set to a high, constant value dinvalid. The
parameters �u, �v are offsets that are fixed for a specific
feature 'i but differ between features.

We generate nf such features by drawing the offsets �u, �v
randomly within a window of fixed size. By applying the
features on a pixel p and stacking the values together, we
get the feature vector for this pixel.

B. Training Objectives

For the training of the random forests, we compare four
different training objective functions:

• Mean Squared Error (MSE)
• Mean Squared Pairwise DISP (MSPD)
• Weighted Spectral Clustering-based Split (WSC)
• Mapped Point Mean Squared Error (MPMSE)
The MSE criterion is the standard criterion for training a

regression RF and is based on the Euclidean distance in the
configuration space. We compare this metric, that is agnostic
to the geometry of the particular problem we are addressing,
to other criteria which are based on the model-based DISP
distance. Our hypothesis is that these specialized criteria lead
to better pose estimators for our specific task. Indeed, the
MSPD criterion achieves better estimation accuracy in our
evaluation, especially on unsegmented images (see Sec. IV-
D). However, it has the drawback of an increased training
time. The other DISP-based criteria are attempts to achieve
similar accuracy while being more efficient.

The only difference between the criteria is the definition
of the impurity H(S) used in (1), which in the following is
defined for each criterion. We define S = {y1, . . . ,yn} as
the set of target values of the training samples.

split

C0

C1
Wl

Wr

Sl Sr

Fig. 3. Example for the WSC criterion. The colours show the result of the
clustering. Assuming that the blue cluster goes left and the red one right
of the split indicated by the dotted line, the one red sample on the left side
forms the set Wl and the two blue samples on the right the set Wr .

1) Mean Squared Error (MSE): Minimizes the MSE by
defining the impurity as the variance of the target values y
of the samples. For k-dimensional target values with k > 1,
the average variance over the single dimensions is used.

HMSE(S) =
1

k

kX

i=1

0

@ 1

|S|
X

y2S

y2
i � ¯y2

i

1

A (5)

where ȳ =
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y2S y is the mean of the samples.
2) Mean Squared Pairwise DISP (MSPD): The impurity

of the MSPD criterion is defined as the average distance
between all pairs of samples in the set S:

HMSPD(S) =
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Computing HMSPD(S) is very time consuming due to the
nested sum. We therefore developed the following objectives
which also use DISP while being much cheaper to compute.

3) Weighted Spectral Clustering-based Split (WSC): At
each node first a spectral clustering [25] of the samples S
into two clusters C0, C1 is done, based on the pairwise DISP
distances. We assume these clusters to represent the optimal
split of the data. Therefore we evaluate the feature based split
candidates by comparing the resulting splits to the clustering.
The scoring is higher the better they match.

This criterion is visualized in Fig. 3. Assume that the
samples of C0 are supposed to be in the left subset Sl and
the samples of C1 in the right subset Sr. We determine the
sets of “wrong samples” Wl,Wr as follows:

Wl = Sl \ C1

Wr = Sr \ C0
(7)

The impurity of the split subsets is defined as the summed
distance of the wrong samples in the split to the most central
sample ci of the correct cluster:

HWSC(Sl) =

X

s2Wl

DISP(s, c0)

HWSC(Sr) =

X

s2Wr

DISP(s, c1)
(8)

The central sample is defined as follows:

ci = argmin

s2Ci

X

s02Ci

DISP(s, s0) (9)



Fig. 4. Visualization of the arm poses mapped into 2-dimensional space
using tSNE. Poses are visualized by the corresponding depth images.

We use this definition of the central sample instead of just
computing the mean for two reasons: We avoid problems
due to the circularity of the angles values (0� = 360

�)
and with our definition ci is always in the set of original
training samples which allows the use of a lookup table for
the computationally expensive DISP distance.

A simpler method would be to count the “wrong samples”
instead of weighting them with their distance to the cluster
(i.e. H(Si) = kWik). This is also less accurate, however, as
it does not capture how “wrong” a sample in the split is.

Since we do not know in advance which of the two clusters
better goes left and which right, we evaluate both variants
and use the one with smaller sum HWSC(Sl) +HWSC(Sr).

The resulting leaf impurities are not suited to compute
confidence values. Therefore leaf confidences are computed
as a post-processing step based on the impurity function (6)
of the MSPD criterion.

4) Mapped Point Mean Squared Error (MPMSE): This
impurity measure minimizes the MSE on a mapping y0

=

m(y) of the target values.
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Note that this is the same as (5) but y replaced with y0

and k with k0. The mapping function m is chosen such that
data points which are close according to the DISP metric
are also close when measured with the Euclidean distance in
the mapped space. Two mapping methods were tested: tSNE
[26] and Kernel PCA (KPCA) [27].

Aside from the dimensionality of the target space, tSNE
takes as input the perplexity p and a distance matrix D of the
samples. In our case, D contains the pair-wise DISP distance
between all sample points, i.e. Di,j = DISP(yi,yj). For
KPCA a Gram matrix G is used as kernel which is computed
from the distance matrix as in [28]:

Gi,j = exp
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where � is a free parameter. Fig. 4 visualizes an exemplary
mapping of tSNE into a 2-dimensional space.

C. Combination of Single Pixel Predictions

The forest performs an independent pixel-wise regression
to joint angles. This results in a full arm pose estimate ŷp

and a confidence cp for each valid pixel p 2 I (invalid
pixels, e.g. at occlusion boundaries, are skipped so for ease of
notation we assume in the following that I contains only the
valid pixels). Of these “pixel-estimates”, the ones of highly-
confident pixels I 0 = {p 2 I | cp � t} are chosen, where

t = min

p2I
(cp) +

✓
max

p2I
(cp)�min

p2I
(cp)

◆
· tr (12)

is a dynamic threshold that depends on the range of con-
fidence values in the image. The parameter tr 2 [0, 1]
influences how many pixels are considered. This threshold
automatically adapts to the confidence range of the given
image and ensures that I 0 is never empty. We have observed
that it usually chooses pixels of the foreground, which yield
comparably good estimates (see Fig. 6).

The final pose estimate for the given image is computed
as the confidence-weighted mean over the selected pixels I 0:

ŷ =

1P
p2I0 cp

·
X

p2I0

cp · ŷp . (13)

D. Prior Image Segmentation
Pixels showing parts of the robot are much more in-

formative for the estimator than pixels in the background.
Further, if we want to estimate the right arm’s pose, pixels
showing the left arm do not provide useful information—
quite the contrary they may confuse the estimator and cause
bad estimates. Therefore, we expect a prior segmentation of
the image into left and right arm and into background to
improve the accuracy of the pose estimation.

For this segmentation, we train a classification RF on
synthetic depth images. We use the same type of depth
features as for the pose estimation but additionally add the
pixel coordinates (x, y) and the actual depth value of the
pixel. Target classes of the classification are right arm, left
arm and background. This is similar to our previous work
where additionally to the robot part labels, we also added a
background class.

The resulting segmentation forest (SF) is applied prior to
the pose estimation forest (PEF) described above. All pixels
classified to something other than the estimated arm are
set to invalid measurements which effectively removes all
but the arm of interest from the image. The PEF is then
applied on this segmented image, making predictions only
for the remaining pixels. Note that features for the PEF are
computed after removing the background. The whole process
is illustrated in Fig. 5.

While this adds additional effort at test time for first
segmenting the image, it accelerates the pose prediction in
the second step significantly since no prediction has to be
done for the removed background pixels.

Another way to incorporate the segmentation, that may
be investigated further in future work, is not to remove
background pixels but instead compute additional features
on the segmentation map which are appended to the depth
features computed on the original image (similar to the
approach of [29]).
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Fig. 5. First the depth image is processed by the segmentation forest to
remove background pixels. The modified image is then passed to the pose
estimation forest which outputs estimated joint angles for the arm.

IV. EXPERIMENTAL RESULTS

We performed several experiments to evaluate the perfor-
mance of our method. First we describe how we generated
our dataset based on synthetic depth images. Then we use
this dataset to evaluate the influence of the confidence
threshold, the performance of the prior segmentation and to
compare the different training objectives with each other as
well as the new method to our previous work [3]. Finally we
show how an estimator trained on synthetic images performs
on real sensor data.

A. Training Data
We use the scikit-learn library [30] for the implementation

of the RF. We trained the RF on the same synthetic depth
images that we already used in [3]. To make the images as re-
alistic as possible, we used a reimplementation of the sensor
model proposed in [31], which simulates typical effects that
appear in images of real RGB-D cameras like the Kinect or
Xtion (e.g. depth shadows or disparity quantization). For our
experiments, we used the ARM robot with two 7 DoF Barrett
WAM arms and two 4 DoF Barrett hands. Depth images
showing the arms are provided by a head-mounted Xtion [3].
For rendering the synthetic images we used an accurate 3D
model of the robot. This makes the generated dataset specific
for this particular robot but datasets for different robots can
simply be created by replacing the model. The background of
the images is randomized by adding some furniture (chairs,
a table, closet and shelf) at random positions.

We generate nf = 500 different features as defined in (4)
by drawing offsets within a window of size 200⇥200. From
each image I , we randomly draw a set of 2000 foreground
pixels (showing the robot) and 1000 background pixels. On
each of these pixels we apply the generated features and
stack the values to form a feature vector. We set the value
for invalid pixels to dinvalid = 5m. These settings are the
same as in our previous work [3]. The target values y of
the training samples are the angular joint configurations of
the right arm of the robot. The arm consists of 15 joints
(including the hand) so y is 15-dimensional.

When prior segmentation is used, we first train the SF
and use it to segment the training images of the PEF, before
features are extracted. In this case we are only sampling
pixels classified as foreground and not a combination of

TABLE I
TEST RESULTS OF THE SEGMENTATION FOREST.

Class Precision Recall f1-Score # pixels in test set

background 1.00 1.00 1.00 115 694 402
left arm 0.88 0.89 0.88 3 112 220
right arm 0.81 0.95 0.87 2 648 648

foreground and background pixels as we do it in the case
without segmentation. The training set of the SF itself
consists of 3737 images and is distinct from the one of
PEF to avoid that the SF is applied on its own training
data when segmenting the training images of the PEF. In
contrast to the PEF we reduce the number of depth features
to 200 and the window size to 100⇥100 to accelerate feature
computation. Further we add the pixel coordinates and the
actual depth value of the pixel to the features. Again 3000
pixels are randomly sampled from the images but using a
foreground/background ratio of 1:1 (in contrast to the PEF,
where a ratio of 2:1 is used).

B. Sensitivity to Parameter tr

The relative confidence threshold tr in (12) controls how
many pixels of the image are used for the pose estimation.
To analyse the influence of tr on the estimation accuracy, we
evaluated an RF for each training objective on unsegmented
images with different values of tr. The result is plotted in
Fig. 7. In all cases, the test error decreases more or less
monotonically for increasing tr until some point near to
1. Based on Fig. 7 we set tr = 0.9 for the following
experiments which is a point where all training criteria
perform well before for some the error increases again.

We also analysed how the threshold t varies between dif-
ferent images. The bounds of the confidence range (and thus
also t itself) are relatively constant. The mean confidence
of the image has more variation and tends to be higher for
images where more parts of the robot arm are visible. Plots
of the results are omitted here due to space restrictions.

Fig. 6 shows an exemplary pose estimation for one depth
image. In this example no prior segmentation is used. How-
ever, prediction confidence is highest in the area of the arm.
The algorithm therefore automatically selects mostly pixels
on or near the arm as those are the ones that predict an arm
pose with a confidence above the threshold.

C. Segmentation Forest
We use a classification RF to segment robot arms in depth

images prior to pose estimation. In this section we evaluate
the performance of this segmentation for the three classes left
arm, right arm and background. Fig. 8 shows an exemplary
image and the resulting segmentation map. Table I shows
the test result of the whole test set. While the background
is reliably detected, left and right arm are sometimes mixed
up. Nonetheless, the segmentation significantly improves the
pose estimation as is shown in the following. Note also that
no extensive parameter search for the SF was done and pixels
are classified independently of each other.
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(c) Confidence (d) Used Pixels

Fig. 6. Pose estimation on a depth image using a forest trained on 160
images with the MSPD criterion. No prior segmentation is done. (a) shows
the depth image, black pixels denote invalid measurements. In (b) the ground
truth pose is visualized in green and the prediction of the forest in red.
(c) Shows the confidence of the single pixel predictions (red means high
confidence) and (d) shows them after applying the threshold with tr = 0.9.
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Fig. 7. Test error for different values of tr (see III-C).

D. Compare Training Objectives
To compare the different training objectives described in

Sec. III-B, we cross validated each of them on a dataset
which consisted of 600 000 samples based on 200 images
showing different arm poses. This was done twice: Once
with only a PEF that is applied on unmodified images and
once with the additional SF. The result is shown in Fig. 9.

Without segmentation, the MSPD criterion performs sig-
nificantly better on this small training set than MSE at the
expense of a massive increase in training time. The criterion
has to be evaluated at each node in the forest for all split
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Fig. 8. Depth image and resulting segmentation map.
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Fig. 9. Average test error and standard deviation of a 5-fold cross validation
for the different training objectives. Target of the estimation is the right arm.
For the left plot the unmodified depth images where used, for the right plot
background and left arm were removed using a segmentation forest.

candidates, and is therefore slow to evaluate despite using a
lookup table with precomputed DISP distances between all
training samples. Table II lists exemplary training times for
the different criteria on the same training set. The remaining
criteria therefore attempt to take advantage of the better
distance measure provided by DISP without suffering from
such an extreme increase of training complexity as is the
case for MSPD.

The WSC criterion indeed gains slightly better results than
MSE for the case without segmentation and is much faster at
training than MSPD. However, it does not achieve the same
performance as the latter in terms of accuracy. A problem
here could be that the “perfect splits” provided by the spectral
clustering (which is based on the target values) may not
be easily reproducible be the decision tree splits (which are
based on feature values).

The MPMSE criterion was evaluated with two different
methods to compute the point mapping: tSNE and KPCA
(see Sec. III-B.4). For tSNE we set the dimensionality of the
mapped points to d = 2 and the perplexity to p = 40. The
parameters were determined via grid search, changing them
(especially d) did not have a significant impact on the pose
estimation, though. For KPCA we set d = 10 and � = 10.

Fig. 10 shows an evaluation of the quality of the mappings
by tSNE and KPCA using the QNX(K) measure as proposed
in [32]. While tSNE better preserves near neighbourhood for
d = 2, it hardly improves when increasing d (this affirms the
statement of the author of tSNE that it is not well suited for
mappings into higher-dimensional spaces1). KPCA on the
other hand performs clearly better in higher dimensions.

The results of the pose estimation go in line with this
observation: RFs trained with KPCA yield considerably bet-
ter estimates than RFs trained with tSNE. Without segmen-
tation both cannot beat the traditional MSE, though. With
segmented images, KPCA achieves equally good results.

E. Comparison to Previous Approach

In this section, we compare our new method to the
previous one of [3]. We do this by training the classification
RF of [3] on the same training set as used in Sec. IV-D. The

1See FAQ on http://lvdmaaten.github.io/tsne/



TABLE II
EXEMPLARY TRAINING TIME ON A SET OF 480 000 SAMPLES.

Training objective Training time

MSE 7 min
MSPD 60 h
WSC⇤ 27 min

MPMSE 7 min
⇤Implementation only partly parallelized.
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Fig. 10. Quality of the pose mapping using tSNE and KPCA with target
spaces of different dimensionality. The higher a value for a specific K, the
better are the K-nearest neighbours preserved on average.

average test error of both methods is shown in Fig. 11(a).
The new method considerably outperforms the previous one.
Note however, that the used dataset is much smaller than
the set originally used in [3] and forest and retrofitting
parameters were not retuned for this. This does not affect the
performance of the pixel-wise part classification. Fig. 11(b)
shows the f1 scores of the classification of different robot
parts on our test set. The result is similar to the one on
the bigger dataset used in [3]. However, the performance of
joint position estimation drops significantly which is most
likely due to the considerably lower number of training
examples that form the basis for voting for the relative 3D
joint position.

Furthermore, none of the two methods handles the case
where the arm is not visible in the image. The method
proposed in [3] is most affected by this, as the joint angles
are estimated by aligning the arm with the detected joint
positions through inverse kinematics. If there are false posi-
tives, this will throw off the estimate completely. Indeed, the
test images that caused the biggest errors were mostly those
where nothing or only very little of the arm is visible.

Taking these aspects together explains the large perfor-
mance difference in Fig. 11(a) and emphasizes that it is
beneficial to optimize directly on error to the target values
as proposed in this paper.

F. Test on Real Data
So far all evaluations were done using synthetic images.

In this section we show how the RF trained on synthetic
images performs when applied on real images. For doing
this we used real depth images of three different static arm
poses recorded with the head-mounted Xtion of our ARM
robot (see Sec. IV-A). Unfortunately we have no ground
truth information for the real images so we cannot give a
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Fig. 11. Plot (a) compares the pose estimation error of the best working
method of this paper (MSPD with pre-segmented images) to the previous
approach of [3]. Plot (b) shows the pixel classification accuracy for the
different robot parts using the method of [3] on our test set (robot part
indices are the same as in [3, Table I]).

Fig. 12. Estimations on real depth images. The upper row shows the depth
images, the lower one visualizes in grey the robot pose estimated from
encoder readings, in orange the point cloud obtained from the depth images
and in blue the estimate of our method for the right arm.

quantitative evaluation of the estimates. However Fig. 12
qualitatively visualizes the results. To achieve these results
on real data, much more training data is necessary than used
above. The used RF was trained on a set of 2000 images,
using the MSE training objective due to its faster training
and good accuracy.

Pose estimates based on motor encoders of our robot
are quite inaccurate. This can be observed by the gap
between the real position of the hand as perceived by the
camera (orange point cloud) and the estimated pose based
on the encoders (grey model). In the first two examples the
estimates of our method (blue model) look better than the
ones based on the encoders. In the third one it is far off from
the real arm pose. This can be explained by the pose which
is far away from the poses contained in the training set. This
can be mitigated by using a larger training set that better
covers the configuration space of the arm.

V. CONCLUSION AND FUTURE WORK

Based on synthetically generated depth images, we trained
a regression RF to estimate robot arm poses in single depth
images and based on simple depth features. We showed
that this considerably improved our previous approach [3]
in terms of accuracy. At the same time, we reduced the
computational effort at test time as the new method trains



an RF to directly regress to joint angles. In contract, the
former approach did a detour by first classifying the pixel’s
robot part and then estimating the 3D position of each joint
through time-consuming clustering of the single pixel votes.

The proposed method works on a frame-by-frame base
without the need for initialization or knowledge about previ-
ous frames. Furthermore, it can handle raw depth images
without the need of any preprocessing as pixel selection
based on confidence automatically chooses pixels mostly on
or near to the arm. However, we showed that the accuracy can
be improved using a separately trained segmentation forest
for prior segmentation of the arm of interest.

We showed how different training objectives that use
DISP rather than Euclidean distance influence the accuracy
of the pose estimation. We expected the DISP distance
to work better, as it better reflects the displacement of
the arm. On unsegmented images the DISP-based MSPD
objective achieves indeed higher accuracy than the traditional
Euclidean distance-based MSE objective at the cost of a
computationally more expensive training. However, with
prior segmentation the difference decreases—MSE achieves
almost the same results here while being much more efficient.
We evaluated other DISP-based objectives that are computa-
tionally less expensive than MSPD but none of them could
could considerably beat MSE in terms of accuracy.

So far, no explicit analysis of the robustness against
occlusions was done. This would be interesting as parts
of the arm can be hidden by the other arm or due to
self-occlusion. Further it would be interesting to repeat the
experiments with another robot that has a different shape and
to compare different types of depth features. The presented
method assumes a fixed camera pose. As the robot can move
its head, it would be beneficial to improve the method to
handle a moving camera (note that our previous work [3] can
handle this, using the encoder readings of the head joints).
As already mentioned above, an alternative to using the SF
to remove background, would be to generate a probabilistic
segmentation map and compute additional features based on
it. The PEF would then be trained on features coming partly
from the depth image and partly from the segmentation map.
This idea was already successfully used in [29] and first
experiments on our task showed significant improvement
compared to when no segmentation is used.
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