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Abstract

This paper presents work on vision based robotic grasping. The proposed
method adopts a learning framework where prototypical grasping points are
learnt from several examples and then used on novel objects. For representa-
tion purposes, we apply the concept of shape context and for learning we use
a supervised learning approach in which the classifier is trained with labelled
synthetic images. We evaluate and compare the performance of linear and non-
linear classifiers. Our results show that a combination of a descriptor based
on shape context with a non-linear classification algorithm leads to a stable
detection of grasping points for a variety of objects.
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1. Introduction

Robotic grasping of unknown objects remains an open problem in the robotic
community. Although humans master this skill easily, no suitable representa-
tions of the whole process have yet been proposed in the neuroscientific lit-
erature, making it difficult to develop robotic systems that can mimic human
grasping behaviour. However, there is some valuable insight. Goodale [1] pro-
poses that the human visual system is characterised by a division into the dorsal
and ventral pathways. While the dorsal stream is mainly responsible for the
spatial vision targeted towards extracting action relevant visual features, the
ventral stream is engaged in the task of object identification. This dissociation
also suggests two different grasp choice mechanisms dependent on whether a
known or unknown object is to be manipulated. Support for this can be found
in behavioural studies by Borghi [2], Creem and Proffitt [3]. The authors claim
that in the case of novel objects, our actions are purely guided by affordances as
introduced by Gibson [4]. In the case of known objects, semantic information
(e.g., through grasp experience) is needed to grasp them appropriately accord-
ing to their function. However as argued in [1, 5, 6] this division of labour is
not absolute. In case of objects that are similar to previously encountered ones,
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the ventral system helps the dorsal stream in the action selection process by
providing information about prehensile parts along with their afforded actions.

In this paper, we review different approaches towards solving the object
grasping problem in the robotic community and propose a vision based system
that models several important steps in object grasping. We start by proposing
three ways for approaching the problem, namely grasping of:

e Known Objects: These approaches consider grasping of a priori known
objects. The goal is then to estimate object’s pose and retrieve a suitable
grasp, e.g., from an experience database, [7, 8, 9.

o Unknown Objects: Approaches that fall into this category commonly rep-
resent the shape of an unknown object and apply rules or heuristics to
reduce the number of potential grasps [10, 11, 12, 13, 14].

o Familiar Objects: These approaches try reusing preexisting grasp experi-
ence from similar objects. Objects can be familiar in different ways, e.g,
in terms of shape, colour or texture. A common assumption is that new
objects similar to the old ones can be grasped in a similar way [15, 16, 17].

A general observation considering the related work is that there is a trade-off
between the quality of an inferred grasp and the applicability of the method in
a real world scenario. The more precise, accurate and detailed an object model,
the more suitable it is for doing grasp planning. Then criteria such as, e.g.,
form or force closure can be taken into account to plan a stable grasp. However,
when facing noise and outliers common in real world data, more assumptions
regarding object geometry or generated grasps have to be introduced. Figure 1
outlines a rough taxonomy for the related work with respect to object repre-
sentation on which we will elaborate in Section 2. Systems that either rely
exclusively on 2D or on 3D data have some disadvantages in terms of intro-
duced assumptions or strong dependency on the quality of the sensor data. We
develop a representation that integrates data from both modalities as a way to
overcome these issues.

The representation has to be rich enough to allow for the inference of the
most important grasp parameters. In our case that is

e the grasping point on the object with which the tool centre point (TCP)
should be aligned !,

e the approach vector [7] which describes the 3D angle that the robot hand
approaches the grasping point with and

e the wrist orientation of the robotic hand.

In our approach, a grasping point is detected based on the global shape of
an object in a single image. Research in the area of neuropsychology empha-
sises the influence of global shape when humans choose a grasp [18, 19, 20].

n this paper the TCP is at the centre of palm of the robotic gripper.
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Figure 1: Grasp inference systems with respect to employed representation. (1) Approaches
that use 3D data for representing the object are usually strongly dependent on good quality
of the sensory data. See Section 2.2 and 2.3.1.(2) Approaches that use 2D information only
for inferring a grasp usually have to make strong assumptions about applicable actions or the
3D shape of the object. See Section 2.3.2. (3) Systems that integrate 2D and 3D data are
able to remove some assumptions made when using 2D only and are less dependent on the
quality of the 3D data.

Matching between stereo views is then used to infer the approach vector and
wrist orientation for the robot hand. We further demonstrate how a supervised
learning methodology can be used for grasping of familiar objects.

The contributions of our approach are:

i) We apply the concept of shape context [21] to the task of robotic grasping
which to the best of our knowledge has not yet been applied for that purpose.
The approach is different from the one taken in [15, 17] where only local ap-
pearance is used instead of global shape.

ii) We infer grasp configurations for arbitrarily shaped objects from a stereo
image pair. These are the main difference to the work presented in [16, 22]
where either only planar objects are considered or three views from an object
have to be obtained by moving the camera.

iii) We analyse how stable our algorithm is in realistic scenarios including back-
ground clutter without trained scenario examples as in [15].

iv) We apply a supervised learning algorithm trained using synthetic labelled
images from the database provided by [15]. We compare the classification per-
formance when using a linear classifier (logistic regression) and a non-linear
classifier (Support Vector Machines (SVMs)).

The remainder of this paper is organised as follows: In the next section, we
present related work. In Section 3, the method of applying shape context to
grasping is introduced. We also describe and comment on the database that
we used for training and give some background knowledge on the two different
classification methods. The section concludes with a presentation on how a
whole grasp configuration can be derived. In Section 4 we evaluate our method
both on simulated and real data. The last section concludes the paper and gives
an outlook on future work.



2. Related Work

There is a significant body of work dealing with grasp selection. We use the
division proposed in the previous section to review the related work.

2.1. Grasping Known Objects

The main problem in the area of grasp planning is the huge search space
from which a good grasp has to be retrieved. Its size is due to the large number
of hand configurations that can be applied to a given object. In the theory
of contact-level grasping [23, 24] a good grasp is defined from the perspective
of forces, friction and wrenches. Based on this different criteria are defined to
rate grasp configurations, e.g., force closure, dexterity, equilibrium, stability and
dynamic behaviour.

Several approaches in the area of grasp planning exists that apply these cri-
teria to find a good grasp for an object with a given 3D model. Some of them
approximate the object’s shape with a number of primitives such as spheres,
cones, cylinders and boxes [25] or superquadrics (SQ) [26]. These shape prim-
itives are then used to limit the number of candidate grasps and thus prune
the search tree for finding the most stable grasp. Ciorcarlie et al. [27] exploited
results from neuroscience that showed that human hand control takes place in
a much lower dimension than the actual number of its degrees of freedom. This
finding was applied to directly reduce the configuration space of a robotic hand
to find pre-grasp postures. From these so called eigengrasps the system searches
for stable grasps. Borst et al. [28] reduce the number of candidate grasps by ran-
domly generating a number of them dependent on the object surface and filter
them with a simple heuristic. The authors show that this approach works well
if the goal is not to find an optimal grasp but instead a fairly good grasp that
works well for “ everyday tasks”. Quite a different approach is taken by Li and
Pollard [29]. Although, the method is independent of the ideas of contact-level
grasping it still relies on the availability of a 3D object model. The authors treat
the problem of finding a suitable grasp as a shape matching problem between
the hand and the object. The approach starts off with a database of human
grasp examples. From this database a suitable grasp is retrieved when queried
with a new object. Shape features of this object are matched against the shape
of the inside of the available hand postures.

All these approaches are developed and evaluated in simulation. How-
ever, Ekvall and Kragic [7] and Morales et al. [8] combine real and simulated
data for the purpose of grasping known objects, i.e. their 3D model is available.
In a monocular image a known object is recognised and its pose within the scene
is estimated. Given that information, an appropriate grasp configuration can be
selected from a grasp experience database. This database was acquired offline
through simulations of grasps on 3D models of a set of these known objects.
While Ekvall and Kragic [7] still apply the selected grasp in simulation, Morales
et al. [8] ported this approach to the robotic platform described in Asfour et al.
[30]. Glover et al. [9] consider known deformable objects. For representing
them probabilistic models of their 2D shape are learnt. The objects can then be



detected in monocular images of cluttered scenes even when they are partially
occluded. The visible object parts serve as a basis for planning a stable grasp
under consideration of the global object shape. However, all these approaches
are dependent on an a priori known dense or detailed object model either in 2D
or in 3D.

2.2. Grasping Unknown Objects

If the goal is to grasp an unknown object these approaches are not applicable
since in practise it is very difficult to infer its geometry fully and accurately
from measurements taken from sensor devices such as cameras and laser range
finders. There are various ways to deal with this sparse, incomplete and noisy
data. Hiibner and Kragic [10], Dunes et al. [11] for example approximate an
object with shape primitives that provide cues for potential grasps. Hiibner
and Kragic [10] decompose a point cloud derived from a stereo camera into a
constellation of boxes. The simple geometry of a box reduces the number of
potential grasps significantly. Dunes et al. [11] approximate the rough object
shape with a quadric whose minor axis is used to infer the wrist orientation, the
object centroid serves as the approach target and the rough object size helps
to determine the hand pre-shape. The quadric is estimated from multi-view
measurements of the rough object shape in monocular images. Opposed to the
above mentioned techniques Bone et al. [14] made no prior assumption about
the rough shape of the object. They applied shape carving for the purpose
of grasping with a parallel-jaw gripper. After obtaining a model of the object,
they search for a pair of reasonably flat and parallel surfaces that are best suited
for this kind of manipulator. Richtsfeld and Vincze [12] use a point cloud of
an object that is obtained from a stereo camera at a fixed viewpoint. They
are searching for a suitable grasp with a simple gripper based on the shift of
the top plane of an object into its centre of mass. Kraft et al. [13] also use a
stereo camera to extract an object model. Instead of a raw point cloud, they are
processing it further to obtain a sparser model consisting of local multi-modal
contour descriptors. Four elementary grasping actions are associated to specific
constellations of these features. With the help of heuristics the huge number of
resulting grasp hypotheses is reduced.

2.8. Grasping Familiar Objects

A promising direction in the area of grasp planning is to re-use experience
to grasp familiar objects. Many of the objects surrounding us can be grouped
together into categories of common characteristics. There are different possibil-
ities what these commonalities can be. In the computer vision community for
example, objects within one category usually share characteristic visual proper-
ties. These can be, e.g., a common texture [31] or shape [32, 21], the occurrence
of specific local features [33, 34] or their specific spatial constellation [35, 36].
These categories are usually referred to as basic level categories and emerged
from the area of cognitive psychology [37].

In robotics however, and specifically in the area of manipulation, the goal
is to enable an embodied, cognitive agent to interact with these objects. In



this case, objects in one category should share common affordances [17]. More
specifically, this means that they should also be graspable in a similar way.
The difficulty then is to find a representation that can encode this common
affordance and is grounded in the embodiment and cognitive capabilities of the
agent.

Our method, and all of the following presented approaches, try to learn from
experience how different objects can be grasped given different representations.
This is different from the aforementioned systems in which unknown objects are
grasped. There the difficulty lies in finding appropriate rules and heuristics. In
the following, we will present related work that tackle the grasping of familiar
objects and specifically focus on the applied representations.

2.8.1. Based on 3D Data

First of all, there are approaches that rely on 3D data only. El-Khoury and
Sahbani [38] for example segment a given point cloud into parts and approximate
each part by an SQ. An artificial neural net ANN is used to classify whether
or not the grasp is prehensile. The ANN has been trained beforehand on la-
belled SQs. If one of the object parts is classified as prehensile, an n-fingered
force-closure grasp is applied on this object part. Pelossof et al. [39] instead
directly use a single SQ to find a suitable grasp configuration for a Barrett hand
consisting of the approach vector, wrist orientation and finger spread. An SVM
is trained on data consisting of feature vectors containing the parameters of the
SQ and of the grasp configuration. They were labelled with a scalar estimating
the grasp quality. When feeding the SVM only with the shape parameters of the
SQ, their algorithm searches efficiently through the grasp configuration space
for parameters that maximise the grasp quality. Curtis and Xiao [40] build upon
a database of 3D objects annotated with the best grasps that can be applied
to them. To infer a good grasp for a new object, very basic shape features,
e.g., the aspect ratio of the object’s bounding box, are extracted to classify it
as similar to an object in the database. The assumption made in this approach
is that similarly shaped objects can be grasped in a similar way.

2.3.2. Based on 2D Data

All of the following approaches were performed in simulation where the cen-
tral assumption is that accurate and detailed 3D models are available. As men-
tioned previously, this assumption may not always be valid particularly with
real world data gathered from sensors. like laser range finders or stereo cam-
eras. However, there are experience based approaches that avoid this difficulty
by relying mainly on 2D data. Saxena et al. [15] proposed a system that infers a
point at where to grasp an object directly as a function of its image. They apply
machine learning to train a grasping point model on labelled synthetic images
of a number of different objects. The classification is based on a feature vector
containing local appearance cues regarding colour, texture and edges of an im-
age patch in several scales and of its 24 neighbouring patches in the lowest scale.
The system was used successfully to pick up objects from a dishwasher after it
has been specifically trained for this scenario. However, if more complex goals



are considered that require subsequent actions, e.g., pouring something from
one container into another, semantic knowledge about the object and about
suitable grasps regarding their functionality becomes necessary [2, 3, 41]. Then,
to only represent graspable points without the conception of objectness [13, 42]
is not sufficient.

Another example of a system involving 2D data and grasp experience is pre-
sented by [17]. Here, an object is represented by a composition of prehensile
parts. These so called affordance cues are obtained by observing the interaction
of a person with a specific object. Grasp hypotheses for new stimuli are inferred
by matching features of that object against a codebook of learnt affordance cues
that are stored along with relative object position and scale. However, how
exactly to grasp these detected prehensile parts is not yet solved since hand
orientation and finger configuration are not inferred from the affordance cues.
More successful in terms of the inference of full grasp configurations are Morales
et al. [16] who use visual feedback to even predict fingertip positions. The au-
thors also take the hand kinematics into consideration when selecting a number
of planar grasp hypotheses directly from 2D object contours. To predict which
of these grasps is the most stable one, a KNN-approach is applied in connection
with a grasp experience database. However, the approach is restricted to planar
objects.

2.3.3. Integrating 2D and 3D Data

In Figure 1, we divided the related the work in the area of grasp inference
systems into three different kinds dependent on the employed modality of object
representation. As already mentioned above, we believe that systems in which
both 2D and 3D data are integrated are most promising in terms of dealing
with sensor noise and removing assumptions about object shape or applicable
grasps.

There are approaches in the community that have taken this path. In [43],
two depth sensors are applied to obtain a point cloud of a tabletop scene with
several objects. The authors extend their previous work to infer initial 2D grasp-
ing point hypothesis. Then, the shape of the point cloud within a sphere centred
around a hypothesis is analysed with respect to hand kinematics. This enhances
the prediction of a stable grasp and also allows for the inference of grasp pa-
rameters like approach vector and finger spread. In their earlier work [15],
only downward or outward grasp were possible with the manipulators in a fixed
pinch grasp configuration. Speth et al. [22] showed that their earlier 2D based
approach [16] is also applicable when considering 3D objects. The camera is
used to explore the object to retrieve crucial information like height, 3D posi-
tion and pose. However, all this additional information is not applied in the
inference and final selection of a suitable grasp configuration. In this paper, we
are also proposing an approach that falls into the 3rd path of Figure 1. We see
the result of the 2D based grasp inference as a way to search in a 3D object
representation for a full grasp configuration. Here, we will focus on the devel-
opment of the 2D method and demonstrate its applicability for searching in a
minimal 3D object representation.



3. Using Shape Context for Grasping

A detailed flow chart of the whole system and associated hardware is given
in Figure 2. First, scene segmentation is performed based on a stereo input
resulting in several object hypotheses. Shape context is then computed on each
of the object hypotheses and 2D grasping points are extracted. The models of
grasping points are computed beforehand through offline training on an image
database. The points in the left and in the right image are associated to each
other to infer a 3D grasping point via triangulation. In parallel with the grasping
point detection, the segments are analysed in terms of rough object pose. By
integrating the 3D grasping point with this pose, a full grasp configuration can
be determined and then executed. In the following sections, the individual steps
of the system are explained in more detail.

8.1. Scene Segmentation

The system starts by performing the figure-ground segmentation. Although
the problem is still unsolved for general scenes, we have demonstrated in our
previous work how simple assumptions about the environment help in segmen-
tation of table-top scenes, [46, 47, 48]. The segmentation is based on integration
of stereo cues using foveal and peripheral cameras. In the below, we shortly refer
to the different steps of the segmentation process.

3.1.1. Zero-Disparity

The advantage of using an active stereo head lies in its capability to fixate
on interesting parts of the scene. A system that implements an attentional
mechanism has been presented by Rasolzadeh et al. [49]. Once the system is in
fixation, zero-disparities are employed as a cue for figure-ground segmentation
through different segmentation techniques, e.g., watershedding , Bjorkman and
Eklundh [48]. The assumption made is that continuity in reconstructed depth
results from an object. However, Figure 3 shows that such a simple assumption
results in bad segmentation of the object from the plane on which it is placed.

8.1.2. Planar Surfaces

The environment in which service robots perform their tasks are dominated
by planar surfaces. In order to overcome the above segmentation problem, we
use an assumption of the dominant plane. In our examples, this plane represents
the table top objects are placed on. For that purpose, we fit a planar surface
to the disparity image. The probability for each pixel in the disparity image to
belong to that plane or not depends on its distance to the most likely plane.
In that way, objects standing out of a plane are well segmented. Problems
can arise with non-textured objects when the disparity image has large hollow
regions. When the table plane assumption is violated through, e.g., clutter, the
segmentation of the object is more difficult. Examples are shown in Figure 3.
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Figure 2: Components of the Stereo Vision based Grasp Inference System



(a) Segmentation based on zero disparities only.
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Figure 3: Segmentation results for: 1st column) One textured object. 2nd column) Cluttered
table scene. 3rd column) Non-textured object. 4th column) Two similarly coloured objects.
5th column) Occlusion.

3.1.8. Uniform Texture and Colour

An additional assumption can be made on the constancy of object appear-
ance properties, assuming either uniformly coloured or textured objects. Intro-
ducing this cue in conjunction with the table plane assumption, the quality of
the figure-ground segmentation increases. The probability that a specific hue
indicates a foreground object depends on the foreground probability (including
the table plane assumption) of pixels in which it occurs. This holds equivalently
for the background probability of the hue. The colour cue contributes to the
overall estimate with the likelihood ratio between foreground and background
probability of the hue. The examples are shown in Figure 3. Judging from
the examples and our previous work, we can obtain reasonable hypotheses of
objects in the scene. In Section 4 and Section 4.3 we analyse the performance
of the grasp point detection for varying quality of segmentation.

8.2. Representing Relative Shape

Once the individual object hypotheses are made, we continue with the de-
tection of grasping points. In Section 3.5 we show how to further infer the
approach vector and wrist orientation. Grasping an object depends to a large
extent on its global shape. Our approach encodes the global property of an ob-
ject with a local, image based representation. Consider for example elongated
objects such as pens. A natural grasp is in its middle, roughly at the centre
of mass. The point in the middle divides the object in two relatively similar
shapes. Hence, the shape relative to this point is approximately symmetric. In
contrast to that, the shape relative to a point at one of the ends of the object is
highly asymmetric. Associating a point on the object with its relative shape and
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Figure 4: Example of deriving the shape context descriptor for the image of a pencil. (a)
Input image of the pencil. (b) Contour of the pencil derived with the Canny operator. (c)
Sampled points of the contour with gradients. (d) All vectors from one point to all other
sample points. (e) Histogram with four angle and five log-radius bins comprising the vectors
depicted in (d).

the natural grasp is the central idea of our work. For this purpose we use the
concept of shape context commonly used for shape matching, object recognition
and human body tracking, [50, 51, 52]. In the following, we briefly summarise
the main ideas of shape context. For a more elaborate description, we refer
to [21].

The basis for the computation of shape context is an edge image of the
object. N sample points are taken uniformly from the contours, considering
both inner and outer contours. For each point we compute the vectors that lead
to all other sample points. These vectors relate the global shape of the object
to the considered reference point. We create a compact descriptor comprising
this information for each point by a two dimensional histogram with angle and
radius bins. In [21] it is proposed to use a log-polar coordinate system in order
to emphasise the influence of nearby samples. An example for the entire process
is shown in Figure 4.

A big advantage of shape context is that it is invariant to different trans-
formations. Invariance to translation is intrinsic since both the angle and the
radius values are determined relative to points on the object. To achieve scale
invariance, [21] proposed to normalise all radial distances by the median dis-
tance between all N2 point pairs in the shape. Also rotation invariance can be
easily achieved by measuring the angles relative to the gradient of the sample
points. In the following, we will describe how to apply the relative shape repre-
sentation to form a feature vector that can later be classified as either graspable
or not.

3.2.1. Feature Vector

In the segmented image, we compute the contour of the object by applying
the Canny edge detector. This raw output is then filtered to remove spurious
edge segments that are either too short or have a very high curvature. The
result serves as the input for computing shape context as described above. We
start by subdividing the image into rectangular patches of 10 x 10 pixels. A
descriptor for each patch serves as the basis to decide whether it represents a
grasping point or not. This descriptor is simply composed of the accumulated
histograms of all sample points on the object’s contour that lie in that patch.

11



Typically only few sample points will be in a 10 x 10 pixel wide window. Fur-
thermore, comparatively small shape details that are less relevant for making a
grasp decision will be represented in the edge image. We therefore calculate the
accumulated histograms in three different scales centred at the current patch.
The edge image of the lowest scale then contains only major edges of the object.
The three histograms are concatenated to form the final feature descriptor of
dimension 120.

3.8. Using Feature Vector for Classification

The detection of grasping points applies a supervised classification approach
utilizing the feature vector described in the previous section. We examine two
different classification methods: a linear one (logistic regression) and a non-
linear one (SVMs), [53]. We describe these briefly below.

Logistic Regression. Let g; denote the binary variable for the ith image patch in
the image. It can either carry the value 1 or 0 for being a grasping point or not.
The posterior probability for the former case will be denoted as P(g; = 1|D;)
where D; is the feature descriptor of the ith image patch. For logistic regression,
this probability is modelled as the sigmoid of a linear function of the feature

descriptor:
1
Plg;=1|D;) = ——— 1
(5 =11D) = 1)
where w is the weight vector of the linear model. These weights are estimated

by maximum likelihood:

w = argmax [ [ P(g: = 1|Di, w’) (2)

where here g; and D; are the labels and feature descriptors of our training data,
respectively.

Support Vector Machines. SVMs produces arbitrary decision functions in fea-
ture space by a linear separation in a space of higher dimension compared to the
feature space. The mapping of the input data into that space is accomplished
by a non-linear kernel function K. In order to obtain the model for the decision
function when applying SVMs, we solve the following optimisation problem:

1
maXZai ~5 Zaiajging(Div Dj) (3)
i 1,7

subject to 0 < a; < C and ), ajg; = 0 with the solution w = Ziv‘“’ a;g;D;. As
a kernel we have chosen a Radial Basis Function (RBF):

1
K(D;,D;) = e I1Pi=Dill* 5 0 and v = 5.7 (4)

The two parameters C' and o are determined by a grid search over parameter
space. In our implementation, we are using the package libsvm [54].

12



Y72 vs ! 292

Figure 5: One example picture for each of the eight object classes used for training along with
their grasp labels (in yellow). Depicted are a book, a cereal bowl, a white board eraser, a
martini glass, a cup, a pencil, a mug and a stapler. The database is adopted from Saxena
et al. [15].

Training Database. For training the different classifiers we will use the database
developed by Saxena et al. [15] containing ca. 12000 synthetic images of eight
object classes depicted along with their grasp labels in Figure 5. One drawback
of the database is that the choice of grasping points is not always consistent
with the object category. As an example, a cup is labelled at two places on
its rim but all the points on the rim are equally well suited for grasping. The
eraser is quite a symmetric object. Neither the local appearance nor the relative
shape of its grasping point are discriminative descriptors. This will be further
discussed in Section 4 where our method is compared to that of [15].

8.4. Approzimating Object Shape

Shape context provides a compact 2D representation of objects in monocular
images. However, grasping is an inherently three-dimensional process. Our goal
is to apply a pinch grasp on the object using a 3D coordinate of the grasping
point and known position and orientation of the wrist of the robot. In order to
infer the 6D grasp configuration, we integrate 2D grasping point detection with
the 3D reconstruction of the object that results from the segmentation process.

We approach the problem by detecting the dominant plane Iy: Dy = Agz+
Bay+ Cqyd in the disparity space d = I4(z,y). The assumption is that the object
can be represented as a constellation of planes in 3D, i.e. a box-like object
has commonly three sides visible to the camera while for a cylindrical object,
the rim or lid generates the most likely plane. We use RANSAC to estimate
the dominant plane hypothesis II; and we also determine its centroid M, by
calculating the mean over all the points in the plane {(z,y)|e(x,y) > 6} where

(Dg — Agx — Bgy)
Cy

6(.13, y) = Id(xay) - ) (5)

the error between estimated and measured disparity of a point, and 6 a thresh-
old. By using the standard projective equations between image coordinates
(z,y), disparity d, camera coordinates (X,Y, Z), baseline b and the focal length

f
X bf
z Z’

we can transform II; into the camera coordinate frame:

Y
e : —Cybf = Agf X + ByfY — DyZ. (7)
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The normal of this plane is then defined as
nc = (Ac, Be,Cc) = (Aaf, Baf, —Da). (8)

Equations 6 are also used to convert the plane centroid My from disparity space
to M¢ in the camera coordinate frame.

8.5. Generation of Grasp Hypotheses
In the following, we describe how the dominant plane provides the structural
support for inferring a full grasp configuration.

8.5.1. 8D Grasping Point

The outputs of the classifier are candidate grasping points in each of the
stereo images. These then need to be matched for estimation of their 3D co-
ordinates. For this purpose we create a set B; = {b;pli = 1---m} of m
image patches i in the left image representing local maxima of the classifier
P(g; = 1|D;) and whose adjacent patches in the 8-neighbourhood carry values
close to that of the centre patch. We apply stereo matching to obtain the corre-
sponding patches B, = {b(;y|i = 1---m} in the right image. Let P (b ;)| D)
and P(b(; )| D) be the probability for each image patch in set B; and B,
to be a grasping point given the respective feature descriptors D(; ;) or Dy .
Assuming naive Bayesian independence between corresponding patches in the
left and right image, the probability P(b;|D(; ), D)) for a 3D point b; to be
a grasping point is modelled as

P(bi,0y| Dy Diiry) = Plbapy|Diiyy) % P, | D ry)- (9)

As already mentioned in the previous section, the approach vector and wrist
orientation are generated based on the dominant plane. Therefore, the choice
of the best grasping point is also influenced by the detected plane. For this
purpose, we use the error e(b(; ;) as defined in Equation 5 as a weight w; in the
ranking of the 3D grasping points. The best patch is then

b= arg max w; X P(b(z’l) |D(i,l)> D(i,r))- (10)

3.5.2. Orientation of the Schunk Hand
Given a 3D grasping point b, the dominant plane Il with its centroid Me

and normal n¢, there are two possibilities for the approach vector a:

(i) @ = vo where vo = M¢ — by and by is the projected grasping point on

fIC along n¢

(ii) a = nc.
This is illustrated in Figure 6. Which of them is chosen depends on the magni-
tude of vo. If |ug| > ¢, the wrist of the hand is chosen to be aligned with the
normal of the plane. If |ug| < ¢, such that by is very close to the centroid of
the plane, we chose n¢ as the approach vector, i.e., the hand is approaching the
dominant plane perpendicularly. In this case, we choose the wrist orientation
to be parallel to the ground plane. In Section 4.4 we present results of object
grasping on our hardware.
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Figure 6: Visualisation of the 6 Dol Grasp Configuration with respect to the estimated
dominant plane IT

4. Experimental Evaluation

We start by comparing our method to the one presented in [15]. The goal is
to show the performance of the methods on synthetic images. This is followed
by an in-depth analysis of our method. Finally, we investigate the applicability
of our method in real settings.

4.1. Ewvaluation on Synthetic Images

In this section, we are especially interested in how well the classifiers gener-
alise over global shape or local appearance given synthetic test images. For this
purpose we applied four different sets of objects to train the classifiers.

e Pencils are grasped at their centre of mass.

o Mugs & cups are grasped at handles. They only differ slightly in global
shape and local grasping point appearance.

e Pencils, white board erasers € martini glasses are all grasped approxi-
mately at their centre of mass at two parallel straight edges. However,
their global shape and local appearance differ significantly.

e Pencils & mugs are grasped differently and also differ significantly in their
shape.

We divided each set into a training and test set. On the training sets we trained
four different classifiers.
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e Shape context & SVM (SCSVM). We employed twelve angle and five log
radius bins for the shape context histogram. We sample the contour with
300 points. The same parameters were applied by [21] and have proven to
perform well for grasping point detection.

e Local appearance features € logistic regression (OrigLog) is the classifier
by [15].

e Local appearance features & SVM (OrigSVM) applies an SVM instead of
logistic regression.

e Shape context, local appearance features €& SVM (SCOrigSVM) integrates
shape context features with local appearance cues. The resulting feature
vector is used to train an SVM.

4.1.1. Accuracy

Each model was evaluated on the respective test sets. The results are shown
as ROC curves in Figure 7 and as accuracy values in Table 1. Accuracy is
defined as the sum of true positives and true negatives over the total number of
examples. Table 1 presents the maximum accuracy for a varying threshold.

The first general observation is that SVM classification outperforms logistic
regression. On average, the classification performance for each set of objects
rose about 4.32% when comparing OrigSVM with OrigLog. A second general
observation is that classifiers that employ global shape (either integrated or not
integrated with appearance cues) have the best classification performance for
all training sets. In the following we will discuss the results for each set.

e Pencils. The local appearance of a pencil does not vary a lot at different
positions along its surface whereas the relative shape does. Therefore, lo-
cal appearance based features are not discriminative enough. This is con-
firmed for the models that are only trained on images of pencils. SCSVM
performs slightly better than OrigSVM. The classification performance
grows when applying an integrated feature vector.

o Mugs & Cups. These objects are grasped at their handle which is charac-
terised by a local structure that is rather constant even when the global
shape changes. Thus, OrigSVM outperforms slightly the classifier that
applies shape context only. However, an integration of both features leads
to an even better performance.

o Pencils, white board erasers & martini glasses. For this set of objects
the position of the grasp is very similar when considering their global
shape whereas the local appearance of the grasping points differs greatly.
Also here, the models based on shape context performs best. Feature
integration degrades the performance.

e Pencils €& mugs. The performance of the different classifiers for the pre-
vious set of objects is a first indication for a weaker generalisation capa-
bility of OrigSVM and Origlog over varying local appearance compared
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to SCSVM and SCOrigSVM. This is further confirmed for the last set
where not just local appearance but also global shape changes signifi-
cantly. SCSVM improves the performance of OrigSVM about 6.75% even
though the grasping points are very different when related to global object
shape. Feature integration increases the performance only moderately.

4.1.2. Repeatability

Our goal is to make a robot grasp arbitrary and novel objects. Thus, we
are also interested in if the best grasping point hypotheses correspond to points
that in reality afford stable grasps. Thus, our second experiment evaluates
whether the best hypotheses are located on or close to the labelled points. We
constructed a set of 80 images from the synthetic image database with ten
randomly selected images of each of the eight object classes (Figure 5). Thus,
also novel objects that were not used for training the different classifiers are
considered. On every image we run all the aforementioned models and for each
one picked out the best ten grasping points b;. In the database, a label is not
a single point, but actually covers a certain area. We evaluated the Euclidean
distance d; of each of the ten grasping points measured from the border of this
ground truth label at position p; and normalised with respect to the length [; of
its major axis. This way, the distance is dependent on the scale of the object in
the image. In case there is more than one label in the image, we choose the one
with the minimum distance. If a point b; lies directly on the label, the distance
d; = 0. If a point lies outside of the label, the distance d; gets weighted with a
Gaussian function (o = 1, = 0) multiplied with v/27. The number of hits h,,
of each model m on the picture set is counted as follows:

K )
e = Yy
k=1 i=1
My dist(b; ,
with dg )y = mﬁfw
7= (3:k)

where K is the number of images in the set, M}, is the number of grasp labels in
that picture and Ny is the number of detected grasping points. Grasping points
whose distance d; exceeds a value of 3 x o are considered as outliers. Figure 8
shows the number of hits, that is, the amount of good grasps for each model.

Apart from the model trained on cups and mugs, the SVM trained only
on shape context always performs best. The performance drop for the second
object set can be explained in the same way as in the previous chapter: handles
have a very distinctive local appearance and are therefore easily detected with
features that capture this. In general, this result indicates that classifiers based
on shape context detect grasping points with a better repeatability. This is
particularly important for the inference of 3D grasping points in which two
2D grasping points in the left and right image of a stereo camera have to be
matched.
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Figure 7: ROC curves for models trained on different objects.

4.1.8. Summary of Results

We draw several conclusion regarding experimental results on synthetic im-
ages. First, independent of which feature representation is chosen, SVM outper-
forms logistic regression. Secondly, our simple and compact feature descriptor
that encodes relative object shape improves the detection of grasping points
both in accuracy and repeatability in most cases. In case of very distinct local
features, both representations are comparable. Integration of the two represen-
tations leads only to moderate improvements or even decreases the classification
performance.

Table 1: Accuracy of the models trained on different objects.

| SCOrigSVM | SCSVM | OrigSVM | OrigLog

Pencil 84.45% 82.55% 80.16% 77.07%
Cup & Mug 90.71% 88.01% | 88.67% 83.85%
Pencil, Martini
& Eraser 84.38% 85.65% | 80.79% 74.92%
Pencil & Mug 85.71% 84.64% 77.80% 74.32%
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Figure 8: Evaluation of the best ten grasping points of each model on a picture test set
containing in total 80 pictures of familiar and novel objects (see Figure 5).

4.2. Opening the Black Box

In the previous section, we presented evidence that the shape context based
models detect grasping points more accurately than the models trained on local
appearance features. As argued in Section 3, we see relative shape as a better cue
for graspability than local appearance. In this section, we would like to confirm
this intuition by analysing what the different grasping point models encode.
We conduct this analysis by applying the Trepan Algorithm by Craven and
Shavlik [55] to the learnt classifiers. This algorithm builds a decision tree that
approximates a concept represented by a given black box classifier. Although
originally proposed for neural networks, Martens et al. [56] showed that it is
also applicable for SVMs.

We use the same sets of objects as mentioned in the previous section. The
extracted trees are binary with leafs that are classifying feature vectors as ei-
ther graspable or non-graspable. The decisions at the non-leaf nodes are made
based on either one or more components of the feature vector. We consider each
positive leaf node as encoding a prototypical visual feature that indicates gras-
pability. As previously mentioned, the extracted trees are only approximations
of the actual models learned. Thus, the feature vectors that end up at a specific
leaf of the tree will be of three different kinds:

e Ground truth. Features that are graspable according to the ground truth
labels in the database.

e Fulse positives by model. Features that are not graspable according to the
labels but are so according to the classifier.

e Fulse positives by tree. Features that are neither labelled in the database
nor classified by the model to be graspable, but are considered to be so
by the tree.

We will analyse these samples separately and also rate the trees by stating their
fidelity and accuracy. Fidelity is a measure of how well the extracted trees
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approximate the considered models. It states the amount of features vectors
whose classification is compliant with the classification of the approximated
model. Accuracy measures the classification rate for either the tree or the model
when run on a test set.

The analysis of these samples is conducted using PCA. The resulting eigen-
vectors form an orthonormal basis with the first eigenvector representing the
direction of the highest variance, the second one the direction with the second
largest variance, etc. In the following sections we visualise only those eigenvec-
tors whose energy is above a certain threshold and at maximum ten of these.
The energy e; of an eigenvector 7 is defined as

k
Zj:l Aj

where A; is the eigenvalue of eigenvector j with k eigenvectors in total. As a
threshold we use 8 = 0.9.

The remainder of this section is structured as follows. In Section 4.2.1, we
visualise the prototypical features for the local appearance method by applying
PCA to the samples at positive nodes. In Section 4.2.1 we do the same for the
relative shape based representation.

(11)

€;, =

4.2.1. Local Appearance Features

Saxena et al. [15] applied a filter bank to 10 x 10 pixel patches in three
spatial scales. The filter bank contains edge, texture (Law’s masks) and colour
filters. In this section, we depict samples of these 10 x 10 pixel patches in the
largest scale. They are taken from every positive node of each tree trained for
a specific object set. All feature vectors that end up at one of these positive
nodes are used as an input to PCA.

The first set we present consists of images of a pencil (see Figure 5) labelled
in its centre of mass. The built tree is rather shallow: it has only four leaf nodes
of which one is positive. The decisions on the non-leaf nodes are made based on
the output of the texture filters only. Neither colour nor edge information are
considered. This means that this part of the feature vector is not necessary to
achieve a classification performance of 75.41% (see Table 2). Ten random sam-
ples from the positive node are shown in Figure 9(a)-(c) subdivided dependent
on whether they are graspable according to the ground truth labels from the
database or only according to the model and tree, respectively.

In order to visualise to which visual cues this grasping point models actually
respond, we run PCA on the set of feature vectors that ended up at that node.
The resulting principal components selected according to Equation 11 are also
depicted in Figure 9 (a)-(c). Encoded are close-ups of the body of the pencil
and perspective distortions.

However, the majority of the pencil complies with these components. Be-
cause of that, the samples from the set of false positives are very similar to the
ground truth samples. The appearance of the centre of mass is not that different
from the rest of the pencil. This is further clarified by Figure 9 where the false
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Figure 9: Pencils:(a)-(c) Ten samples and PCA components of the positive node of the decision
tree. (d) Feature vectors projected into the three dimensional space spanned by the three
eigenvectors of the sample set of true grasping points with the highest variance.

Table 2: Accuracy of the models trained on different objects given the local appearance
representation.

H Pencil ‘ Cups ‘Elongated Pencil & Mug

Fidelity 86.78% | 83.97% 87.55% 89.29%
Accuracy Tree || 75.41% | 82.61% | 72.12% 73.30%
Accuracy Model || 77.07% | 83.85% | 74.92% 74.32%

positives by the model and tree are projected into the space spanned by the
first three principal components from the ground truth: they are strongly over-
lapping. We will show later that given our relative shape based representation
these three first principal components are already enough to define a space in
which graspable points can be better separated from non-graspable points.

For the other sets of objects we applied the same procedure. The principal
components of the samples at each positive node are shown in Figure 10, 11
and 12. In Table 2, the fidelity of the respective trees in relation to the model
and their accuracies are given.

4.2.2. Relative Shape

In this section we evaluate the performance of the shape context in the same
manner as the local appearance features were tested in the previous section.
The process includes

(i) extracting the contour with the Canny edge detector,
(ii) filtering out spurious edge segments,
(iii) subsampling the contour,
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Figure 11: Elongated Objects: Ten samples and PCA components for each of the positive
nodes of the decision tree.

(iv) normalising the sampled contour with the median distance between con-
tour points,

(v) rotating the whole contour according to the average tangent directions of
all the contour points falling into the patch that is currently considered
by the classifier

(vi) and finally plotting the resulting contour on a 20220 pixels patch with the
grasping point in the centre.

The output of this procedure forms the input for PCA. The sample feature
vectors for each node are depicted not as patches but as red squared labels
located at the grasping point on the object.

Each of the induced trees in this section is of a slightly worse quality in terms
of fidelity when compared with the trees obtained from the logistic regression
method (see Table 2). We reason that this is due to the performance of the
Trepan algorithm when approximating SVMs. Nevertheless, the purpose of this
section is the visualisation of prototypical grasping point features rather than
impeccable classification. This performance is therefore acceptable. The results
for the induced trees are given in Table 3.

We start by analysing the model trained on the set of pencils. The induced
decision tree has one positive node. The samples from this node are depicted
in Figure 13 along with the most relevant PCA components to which we will

FmUN=F N0 AP AN G

Figure 12: Pencils and Mugs: Ten samples and PCA components for the positive node of the
decision tree.
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Table 3: Accuracy of the models trained on different objects given the relative shape repre-
sentation.

H Pencil ‘ Cups ‘Elongated Pencil & Mug

Fidelity 78.97% | 79.66% 78.79% 80.82%
Accuracy Tree || 71.38% | 76.89% | 73.40% 73.41%
Accuracy Model || 82.55% | 88.01% | 85.56% 84.64%
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Figure 13: Pencil: Ten samples and PCA components of the positive node of the decision
tree.

refer in the remainder of this paper as eigencontours. These components do
not encode the local appearance but clearly the symmetric relative shape of the
grasping point.

One interesting observation is that the feature vectors projected into the
space spanned by the three best principal components of the ground truth sam-
ples are quite well separable, even with a linear decision boundary. There is
almost no overlap between false positives produced by the tree and the ground
truth features and little overlap between false positives produced by the models
and the true graspable features. This result is shown in Figure 14.

We applied the same procedure to the models trained on the other sets of
objects. The eigencontours for these are shown in Figs. 15-17. For the sets
consisting of different objects, each positive node in the decision tree is mainly
associated with one of the objects and encodes where they are graspable.

Furthermore, we can observe a better separability compared to the models
trained on local appearance. In order to quantify this observation, we analysed
the distribution of the samples in the three-dimensional PCA space in terms
of linear separability. As measures for that we employed Fisher’s discriminant
ratio and the volume of the overlap regions. Figure 14 (b) and (c) show a
comparative plot of these two measures for all the models considered in this
section.

4.2.3. Summary of Results

The evaluation provided a valuable insight into different feature representa-
tions. We observed that our compact feature descriptor based on relative shape
is more discriminative than the feature descriptor that combines the output of
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(b) and (c) measure linear separability for models trained on different training sets and with
different classification methods. Dark: OrigLog. Bright: SCSVM.
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Figure 15: Cups: Ten samples and PCA components for each of the positive nodes of the
decision tree.
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Figure 16: Elongated: Ten samples and PCA components for each of the positive nodes of
the decision tree.
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Figure 17: Pencils and Mugs: Ten samples and PCA components of the first positive node of
the decision tree.

a filter bank. The dimensionality of our descriptor is almost four times smaller
which also has implications for the time needed to train an SVM. The classifi-
cation performance achieved with an SVM could even be improved by finding a
decision boundary in the space spanned by the first three principal components
of a set of ground truth prototypical features.

4.8. Fvaluation on Real Images

In the previous section, we showed that the performance of the relative shape
based classifier is better compared to a method that applies local appearance.
In these synthetic images no background clutter was present. However, in a real
world scenario this we need to cope with clutter, occlusions, etc. One example
is presented in [15]. The authors demonstrated a system for the scenario of
emptying a dishwasher. In order to cope with the visual clutter occurring in
such a scenario, the grasping point model was trained on hand labelled images
of the dishwasher. Although the dishwasher was emptied successfully, for a new
scenario the model has to be re-trained to cope with new backgrounds.

We argue that we need a way to cope with backgrounds based on more
general assumptions. As described earlier in Section 3.1, our method relies on
scene segmentation. In this section, we evaluate how the relative shape based
representation is affected by different levels of segmentation. For that purpose,
we collected images of differently textured and texture-less objects, e.g., boxes,
cans, cups, elongated objects, or toys, composed in scenes of different levels
of complexity. This ranges from single objects on a table to several objects
occluding each other. These scenes were segmented with the three different
techniques described in Section 3.1.

Ideally, we would like to achieve two things. First is the repeatability: the
grasping points for the same object given different qualities of segmentation have
to match. Second is the robustness: the grasping points should be minimally
affected by the amount of clutter. Regarding the latter point, a quantitative
evaluation can only be performed by applying the inferred grasps in practise.
Thus, we demonstrate our system on real hardware in Section 4.4 and present
here some representative examples of the grasping point inference methods when
applied to different kinds of object situated in scenes of varying complexity.
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4.8.1. Examples for Grasping Point Detection

In Figure 18, we show the results of the grasping point classification for
a teapot. The left column shows the segmented input of which the first one
is always the ground truth segment. The middle column shows the result of
the grasping point classification when applying the local appearance based de-
scriptor by [15] and the right one the results of the classification when using the
relative shape based descriptor. The red dots label the detected grasping points.
They are the local maxima in the resulting probability distribution. Maximally
the ten highest valued local maxima are selected.

The figure shows the grasping point classification when the pot is the only
object in the scene and when it is partially occluded. Note that the segmen-
tation in the case of local appearance based features is only influencing which
patches are considered for the selection of grasping points. In case of the rela-
tive shape based descriptor, the segmentation also influences the classification
by determining which edge points are included in the shape context represen-
tation. Nevertheless, what we can observe is that the detection of grasping
points for the representation proposed in this paper is quite robust. For exam-
ple in Figure 18(b) (last row), even though there is a second handle now in the
segmented region, the rim of the teapot is still detected as graspable and the
general resulting grasping point distribution looks similar to the cases in which
the handle was not yet in the segment. This means, that the object the vision
system is currently in fixation on, the one that dominates the scene, produces
the strongest responses of the grasping point model even in the presence of other
graspable objects.

In Figure 19(a), we applied the models trained on mugs and cups to images
of a can and a cup. The descriptor based on local appearance responds very
strongly to textured areas whereas the relative shape based descriptor does not
get distracted by that since the whole object shape is included in the grasping
point inference. Finally in Figure 19(b), we show an example of an object that
is not similar to any object that the grasping point models were trained on. In
case of the local appearance based descriptor, the grasping point probability is
almost uniform and very high valued. In the case of shape context there are
some peaks in the distribution. This suggest that the ability of these models
to generalise over different shapes is higher than for local appearance based
models.

4.3.2. Repeatability of the Detection

One of the goals of the method is the repeatability of grasping point de-
tection. In order to evaluate this, we measured the difference of the detected
grasping points in the differently segmented images. For real images, we do not
have any ground truth labels available as in the case of synthetic data. Thus,
we cannot evaluate the grasp quality as was done in Section 4.1. Instead, we
use the detected grasping points in a manually segmented image as a reference
to quantify the repeatability of the grasping point detection.

We have aset B = {b;||i = 1... N} of pictures and three different cues based
on which they are segmented: zero disparity, a dominant plane and hue. If we
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want to measure the difference dp, between the set of grasping points Gy, =
{94, )ll7 = 1... M} and the set of reference points Gy, = {g@, |k =1... R}
for a specific kind of segmentation of the image b;, then

1L -

b= gy v "
Jj=1
R

dj = Igl:llildlst(g(bi,r)?g(bi’j)) (13)

where dist is the Euclidean distance and K the length of the image diagonal?.
The mean and standard deviation of d;, for all images in the set B that are
segmented with a specific cue is then our measure of deviation of the detected
from the reference grasping points.

In Figure 20 we show this measure for a representative selection of objects
and models. As already mentioned, ideally we would like to see no difference
between detected grasping points when facing different qualities of segmenta-
tion. In practise, we can observe a flat slope. As expected for both methods, the
grasping points detected in the image segmented with zero-disparity cues are
the ones that are deviating most from the reference points. Although, the selec-
tion of points that are included in our representation is directly influenced by
the segmentation, the difference between detected and reference grasping points
is not always bigger than for the appearance based method. In fact, sometimes
it performs even better. This holds for examples of the models trained on mugs
and cups for which both methods show a similar accuracy on synthetic data
(Figure 20 (a) and (b)). If the models are applied to novel objects, as can be
observed in Figure 20 (c¢), our descriptors shows a better repeatability. This
suggests again a better capability of the models to generalise across different
relative shapes. In general, we can say that both methods are comparable in
terms of repeatability.

4.8.8. Summary of Results

In this section, we evaluate the performance of our approach on real images.
Due to the encoding of global shape, the method is robust against occlusions and
strong texture. Although our representation is strongly dependent on the seg-
mentation, we observe that the repeatability of grasping points is comparable
to the local appearance based method even when facing imperfect segmenta-
tion. The analysis included images of varying qualities of segmentation as well
occlusion and clutter.

4.4. Demonstration of Real Grasps

In this section we demonstrate the integration of the 2D grasping point
detection with the minimal 3D object representation as described in Section 3.5.

2In our case K = 80 since we are evaluating 10 X 10 pixel patches in images of size 640 x 480
pixels

27



(a) Single Teapot (b) Partly Occluded Teapot

Figure 18: Grasping point model trained on mugs and pencils applied to a textureless teapot.
The darker a pixel, the higher is the probability that it is a grasping point.
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(a) Grasping point model trained on mugs and (b) Grasping point model trained on pencils,
cups applied to a textured cup. martini glasses and whiteboard eraser ap-
plied to a novel object.

Figure 19: The darker a pixel, the higher is the probability that it is a grasping point.
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(a) Set of Cans (b) Set of Textureless Tea Pots (c) Set of Novel Objects
Figure 20: Comparing the stability of grasp point detection of SCSVM and OriglLog for dif-
ferent sets of objects and different grasping point models when facing imperfect segmentation.
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We used the hardware setup as depicted in Figure 2(a) and 2(b): a 6 DoF
KUKA robotic arm [44], a three-fingered 7 DoF Schunk Hand [45] and the
7 DoF Karlsruhe Active Head [30]. In Figure 21, video snapshots from the
robot grasping three different objects are given along with the segmented input
image, inferred grasping point distribution and detected dominant plane 3. For
this demonstration, we rejected grasping points for which the approach vector
would result in a collision with the table.

In general, we can observe that the generated grasp hypotheses are reason-
able selections from the huge amount of potentially applicable grasps. Failed
grasps are due to the fact that there is no closed-loop control implemented either
in terms of visual servoing or hand movements as demonstrated in our previous
work [57, 58, 59, 60]. Some grasps also fail due to the slippage or collision.

5. Conclusions

Grasping of unknown objects in natural environments is an important and
unsolved problem in the robotic community. In this paper, we have developed a
method for detecting a grasping point on an object by analysing it in a monoc-
ular image and reconstructing the suitable 3D grasping representation based on
a stereo view . Referring to neuropsychological research mentioned in Section 2,
we argued that for the purposes of grasping a yet unseen object, its global shape
has to be taken into account. Therefore, we applied shape context as a visual
feature descriptor that relates the object’s global shape to a single point.

The experimental evaluation was performed both in simulation and in the
real world. The motivation for the simulated experiments was both to compare
our approach with some other state of the art approaches as well as to provide
more insight into the complexity of the whole modelling process. We showed that
a combination of a relative shape based representation and a non-linear classifier
leads to an improved performance of the grasping point classification due to
better discriminativity. Evaluation in the real scene has proven the stability of
the proposed representation in the presence of clutter. The demonstration on
a real robot provides further insight into the difficulty of the object grasping
process. We see several aspects to be evaluated in the future work. We will
continue to further develop the method but integrate it more on the stereo
level for generating the grasping point hypotheses. In addition, we will consider
other types of representation that take into account several aspects of 2D-3D
information. Our ongoing work presented in [61] demonstrates the use of the
method proposed here for grasping unicoloured objects.
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Figure 21: Generating grasps for different objects: Left: Grasping Point, Projected Grasping
Point and Plane Centroid. Middle: Grasping Point Probabilities.
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