
Supplementary Document for
Patches, Planes and Probabilities:

A Non-local Prior for Volumetric 3D Reconstruction

Ali Osman Ulusoy Michael J. Black Andreas Geiger
Max Planck Institute for Intelligent Systems, Tübingen, Germany
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Abstract

This supplementary document presents derivations for the proposed sum-product belief propagation algorithm, pseu-
docode of the inference algorithm, the derivations of our depth-map prediction method as well as additional experiments.
First, we present the message derivations of the sum-product belief propagation algorithm which were omitted in the orig-
inal document. We then present the pseudocode of our inference algorithm, and in particular the message passing scheme.
Besides, we show how Bayes optimal depth predictions can be obtained under our probabilistic model. Finally, we present
a number of additional experiments. In particular, we present results by varying the parameters for the model with pairwise
smoothness potentials. Next, we present an evaluation for the BARUS&HOLLEY dataset which excludes the tree regions
where the LIDAR ground truth is not accurate and show that our algorithm outperforms previous algorithms. Finally, we
present an experiment using a uniform prior over plane orientations as opposed to the Manhattan world prior that we utilize
in the paper.

1. Message Equations for Sum-product Belief Propagation
This section presents the message equations and their derivations that were omitted in the main submission due to lack of

space. We refer the reader to the submission file for the notation and the probabilistic model.
The general form of the message equation for sum-product belief propagation on factor graphs is given by

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Xf\x

µy→f (y) (1)

µx→f (x) =
∏

g∈Fx\f

µg→x(x) (2)

where f denotes a factor, x is a random variable, Xf denotes all variables associated with factor f and Fx is the set of factors
to which variable x is connected. Below, we repeat the factor graph of our model for completeness.
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Ray Potentials & Occupancy Potentials Patch Prior

Figure 1: Factor graph of our probabilistic model.

1.1. Message equations for the unary potentials

We first present the factor-to-variable message equations for the unary factors in our MRF, i.e., ϕoi , ϕ
p
s , and ϕn

s . These
equations are readily given by Eq. 1 as each factor involves only a single variable:

Voxel Occupancy Prior:
µϕo

i→oi(oi) = γoi (1− γ)1−oi (3)

Planarity Potential:

µϕp
s→ps(ps) = exp(λs |Rs| ps) (4)

Normal Potential:

µϕn
s→ns

(ns) =

K∑
k=1

wkM
(

ns
‖ns‖

∣∣∣∣ µk, κk) (5)



1.2. Variable to Factor Messages

Next, we present the variable-to-factor messages for all variables in the MRF. These messages are the product of the
incoming messages to the variable except the message from the destination variable (see Eq. 2) and given as follows:

Message from occupancy variable to the appearance ray potential:

µori→ψa
r
(ori ) = µϕo

i→oi(o
r
i )× µψd

r→ori (ori ) (6)

Message from occupancy variable to the depth ray potential:

µori→ψd
r
(ori ) = µϕo

i→oi(o
r
i )× µψa

r→ori (ori ) (7)

Message from depth variable to the depth ray potential:

µdr→ψd
r
(dr) = µψp

sr→dr (dr) (8)

Message from depth variable to the plane depth potential:

µdr→ψp
sr

(dr) = µψd
r→dr (dr) (9)

Message from planarity variable to the plane depth potential:

µps→ψp
sr

(ps) = µϕp
s→ps(ps) (10)

Message from plane parameter variable to the plane depth potential:

µns→ψp
sr

(ns) = µϕn
s→ns

(ns) (11)

1.3. Derivation for the depth ray potential messages

The depth dr at pixel r is related to the voxel occupancies or along ray r via the depth ray potential ψdr defined as follows,

ψdr (or, dr) =

{
1 if dr =

∑Nr

i=1 o
r
i

∏
j<i (1− orj) dri

0 otherwise
(12)

where dri denotes the depth of voxel i along ray r. This potential establishes the connection between voxel and pixel space
in our hybrid representation.

Message to the depth variable: We begin by deriving the factor-to-variable messages to the depth variable dr. In the
following equations, we drop the ray index r for notational clarity. The message reads as

µψd→d(d = di) =
∑
o1

∑
o2

...
∑
oN

ψd(o, di)

N∏
j=1

µ(oj) (13)

where we have abbreviated the incoming messages to the occupancy variables as follows, µ(oj) = µoj→ψd(oj). Note that
naive computing of this message is intractable as the summation over the o variables requires O(2N ) operations. However,
the special algebraic form of the potential ψd(o, d) allows omputing this message in linear time as we demonstrate below.

We begin by expanding the summations over the occupancy variables as follows:

µψd→d(d = di) =µ(o1 = 1)

[∑
o2

...
∑
oN

ψd(o1 = 1, o2, ..., .oN , d = di)

N∏
j=2

µ(oj)

]
+

µ(o1 = 0)

[∑
o2

...
∑
oN

ψd(o1 = 0, o2, ...., oN , d = di)

N∏
j=2

µ(oj)

]
. (14)



If we assume that i 6= 1, then ψd(o1 = 1, o2, ....oN , di) = 0 and the upper term in the square brackets vanishes, simplifying
the message to

µψd→d(d = di) = µ(o1 = 0)

[∑
o2

...
∑
oN

ψd(o1 = 0, o2, ...., oN , d = di)

N∏
j=2

µ(oj)

]
. (15)

This strategy is repeated until reaching the summation over the ith occupancy variable. At this point, the message reads

µψd→d(d = di) =

[∏
j<i

µ(oj = 0)

][∑
oi

...
∑
oN

ψd(o1 = 0, o2 = 0, ...., oi−1 = 0, oi, ..., oN , d = di)

N∏
j=i

µ(oj)

]
(16)

=

[∏
j<i

µ(oj = 0)

]
µ(oi = 1)

[∑
oi+1

...
∑
oN

evaluates to 1︷ ︸︸ ︷
ψd(o1 = 0, o2 = 0, ...., oi = 1, oi+1, ..., oN , d = di)

N∏
j=i+1

µ(oj)

]
+

[∏
j<i

µ(oj = 0)

]
µ(oi = 0)

[∑
oi+1

...
∑
oN

ψd(o1 = 0, o2 = 0, ...., oi = 0, oi+1, ..., oN , d = di)︸ ︷︷ ︸
evaluates to 0

N∏
j=i+1

µ(oj)

]
.

(17)

Since the potential ψdr in the bottom summand evaluates to 0, the entire bottom term vanishes and the message is simplified
to

µψd→d(d = di) =

[∏
j<i

µ(oj = 0)

]
µ(oi = 1)

[∑
oi+1

...
∑
oN

N∏
j=i+1

µ(oj)︸ ︷︷ ︸
evaluates to 1

]
. (18)

As all incoming messages µ(oj) sum to 1, the term inside the rightmost brackets evaluates to 1 and the message is further
simplified to

µψd→d(d = di) = µ(oi = 1)
∏
j<i

µ(oj = 0) (19)

Message to the occupancy variables: We begin deriving the positive message:

µψd→oi(oi = 1) =

dN∑
d=d1

µ(d)
∑
o1

...
∑
oi−1

∑
oi+1

...
∑
oN

ψd(o1, ..., oi = 1, ..., oN , d)

N∏
j=1
j 6=i

µ(oj) (20)

Like above, we have abbreviated the incoming messages to the occupancy and depth variables using the shorthand notation
µ(oj) = µoj→ψd(oj) and µ(d) = µd→ψd(d). We expand the summation over the depth variable according to its relative
depth wrt. voxel i:

µψd→oi(oi = 1) =

di−1∑
dj=d1

µ(dj)

[∑
o1

...
∑
oi−1

∑
oi+1

...
∑
oN

ψd(o1, ..., oi = 1, ..., oN , dj)

N∏
j=1
j 6=i

µ(oj)

︸ ︷︷ ︸
(�)

]

+ µ(di)

[∑
o1

...
∑
oi−1

∑
oi+1

...
∑
oN

ψd(o1, ..., oi = 1, ..., oN , d = di)

N∏
j=1
j 6=i

µ(oj)

︸ ︷︷ ︸
(4)

]

+

dN∑
dj=di+1

µ(dj)

[∑
o1

...
∑
oi−1

∑
oi+1

...
∑
oN

ψd(o1, ..., oi = 1, ..., oN , dj)

N∏
j=1
j 6=i

µ(oj)

︸ ︷︷ ︸
(♦)

]
. (21)



We can compute (�) using the same strategy used to derive the message to the depth variable. It can be verified that, for any
d = dj such that dj ≤ di−1, we have

(�) = µ(oj = 1)
∏
k<j

µ(ok = 0). (22)

Evaluating (4)

(4) =
∑
o1

...
∑
oi−1

∑
oi+1

...
∑
oN

ψd(o1, ..., oi = 1, ..., oN , d = di)

N∏
j=1
j 6=i

µ(oj), (23)

we realize that ψd(o1, ..., oi = 1, ..., oN , d = di) evaluates to 1 if oj = 0 for all j < i, and 0 for all other cases. Thus we
obtain

(4) =

[∏
j<i

µ(oj = 0)

][∑
oi+1

...
∑
oN

N∏
j=i+1

µ(oj)︸ ︷︷ ︸
evaluates to 1

]
=
∏
j<i

µ(oj = 0). (24)

Finally, (♦) evaluates to 0 since ψd(o1, ..., oi = 1, ..., oN , d) = 0 for all d > di.
By combining all results above, we write the positive message equation as follows:

µψd→oi(oi = 1) =

i−1∑
j=1

µ(dj)

[
µ(oj = 1)

∏
k<j

µ(ok = 0)

]
+ µ(di)

[∏
k<i

µ(ok = 0)

]
(25)

The derivation for the negative case can be obtained by following similar arguments, yielding:

µψd→oi(oi = 0) =

i−1∑
j=1

µ(dj)µ(oj = 1)
∏
k<j

µ(ok = 0) +

N∑
j=i+1

µ(dj)µ(oj = 1)
∏
k<j
k 6=i

µ(ok = 0) (26)

1.4. Particle Belief Propagation

We use particle belief propagation [1] in order to approximate the continuous message equations arising for the plane
depth potential. In particular, we draw K particles, {n(k)

s }Kk=1, from a proposal distribution Ws(n). Using these particles,
we approximate the integrals in the message equations µψp

sr→ps(ps) and µψp
sr→dr (dr) with a Monte carlo estimate. We

present the equations for the exact and the approximated messages below. We abbreviate the incoming messages for brevity
as follows: µ(dr) = µdr→ψp

sr
(dr), µ(ns) = µns→ψp

sr
(ns) and µ(ps) = µps→ψp

sr
(ps). Note that the message approximations

below are up to a proportionality factor. In practice, we renormalize all messages appropriately after approximation.

Message to the planarity variable:

µψp
sr→ps(ps = 1) =

∫
ns

∑
dr

ψpsr(dr, ps = 1,ns)µ(ns)µ(dr) (27)

≈ 1

K

K∑
k=1

∑
dr

ψpsr(dr, ps = 1,ns)
µ(n

(k)
s )

Ws(n
(k)
s )

µ(dr) (28)

µψp
sr→ps(ps = 0) =

∫
ns

∑
dr

ψpsr(dr, ps = 0,ns)µ(ns)µ(dr) =

∫
ns

∑
dr

1µ(ns)µ(dr) (29)

≈ 1

K

K∑
k=1

µ(n
(k)
s )

Ws(n
(k)
s )

(30)



Message to the depth variable:

µψp
sr→dr (dr) =

∑
ps

∫
ns

ψpsr(dr, ps,ns)µ(ps)µ(ns) (31)

= µ(ps = 1)

∫
ns

ψpsr(dr, ps = 1,ns)µ(ns) + µ(ps = 0)

∫
ns

ψpsr(dr, ps = 0,ns)µ(ns) (32)

≈ µ(ps = 1)
1

K

K∑
k=1

ψpsr(dr, ps = 1,n(k)
s )

µ(n
(k)
s )

Ws(n
(k)
s )

+ µ(ps = 0)
1

K

K∑
k=1

µ(n
(k)
s )

Ws(n
(k)
s )

(33)

2. Inference Algorithm Pseudocode
In the following, we present detailed pseudocode for the inference procedure.

Algorithm 1 Inference algorithm

1: procedure INFERENCE
2: Shuffle images.
3: Initialize the depth ray potential messages, i.e. µψd

r→ori (ori ), to uniform distributions.
4: while not converged do
5: for each image in the list do
6: Perform message passing for the appearance ray potentials.

REFINE OCTREE()
7: while not converged do
8: for each image in the list do
9: Perform message passing for the appearance ray potentials.

10: PLANARITY MESSAGE PASSING(image)

Algorithm 2 Message passing pseudocode for the planarity potentials

1: procedure PLANARITY MESSAGE PASSING(image)
2: Compute the median of the (current) depth variable beliefs p(d) for each pixel in the image.
3: For each segment in the image, generate plane parameter samples {n(k)

s }Kk=1 using the depth estimates as described
in Section 4.2 in the submission.

4: Compute the messages from each potential ψpsr to the plane parameter variables using the particles, i.e. evaluate
µψp

sr→ns
(n

(k)
s ).

5: Compute the belief of each plane parameter variable, i.e. p(n(k)
s ) ∝

∏
r∈Rs

µψp
sr→ns

(n
(k)
s ).

6: Compute the message from each potential ψpsr to the binary planarity variables, i.e. µψp
sr→ps(ps), as described in

Section 1.4.
7: Compute the belief of each planarity variable, i.e. p(ps) ∝

∏
r∈Rs

µψp
sr→ps(ps)

8: Compute the message from each potential ψpsr to each depth variable, i.e. µψp
sr→dr (dr).

9: Compute the message from each depth ray potential to the occupancy variables along respective rays, i.e.
µψd

r→ori (ori ).
10: Update the occupancy belief of each voxel using the message µψd

r→ori (ori ).

Algorithm 3 Octree refinement procedure

1: procedure REFINE OCTREE
2: for each octree leaf do
3: if probability of voxel occupancy > 0.3 then . empirically chosen threshold
4: Subdivide octree leaf into eight children.
5: Initialize the voxel occupancy and appearance messages to uniform.



3. Bayes Optimal Depth Estimation
Our probabilistic model allows for computing depth maps which are optimal in terms of Bayes decision. Let us consider

a single pixel / ray r. The optimal Bayes decision minimizes the expected loss as follows,

d∗r = argmin
dr

Ep(d′r)[∆(dr, d
′
r)]. (34)

where p(d′r) is the probability distribution of the depth variables according to the joint distribution, i.e. Eq. 2 in the main
paper. If we consider the common `1-loss, ∆(dr, d

′
r) = |dr − d′r|, the minimizer to Eq. 34 is given by d∗r where p(dr <

d∗r) = p(dr ≥ d∗r) = 0.5, i.e., the median of p(dr).
The marginal p(dr) can be computed by marginalizing all variables except for dr from the joint distribution p(o,a,d,p,n).

While this computation is intractable in general, our inference procedure based on sum-product belief propagation yields an
approximation to the marginal. In particular, the belief of the variable, i.e., the product of all incoming messages to the
variable, approximates the marginal distribution of the variable as

p(dr) ≈ µψd
r→dr (dr)× µψp

sr→dr (dr) (35)

where µψd
r→dr (dr) and µψp

sr→dr (dr) are specified above and in the main paper, respectively.

4. Pairwise Smoothness Weights
As discussed in the submission, we compare our method to a baseline that incorporates pairwise smoothness constraints

into [2], thereby encouraging adjacent voxels to take the same occupancy label.

4.1. Formulation

The joint distribution of this baseline is given by

p(o,a) =
1

Z

∏
i∈X

ϕoi (oi)
∏
r∈R

ψa
r (or,ar)︸ ︷︷ ︸

joint distribution of [2]

∏
(i,j)∈N

φ(oi, oj)︸ ︷︷ ︸
pairwise smoothness terms

(36)

where N is the set of adjacent voxel pairs in the grid. We consider a 6-neighborhood in the voxel grid, i.e., up, down, left,
right, front and back neighbors. The pairwise potential φ is defined by a Potts model

φ(oi, oj) =

{
γ if oi = oj

1 if oi 6= oj
(37)

which encourages neighboring voxels to take on the same label, i.e., γ > 1. The factor-to-variable message equations for the
pairwise smoothness potential φ are given by

µφ→oi(oi) =
∑
oj

φ(oi, oj)µoj→φ(oj) (38)

µφ→oi(oi = 1) = γ µoj→φ(oj = 1) + µoj→φ(oj = 0) (39)
µφ→oi(oi = 0) = µoj→φ(oj = 1) + γ µoj→φ(oj = 0) (40)

4.2. Experiments

We now present experiments to study the effect of this simple pairwise smoothness prior by varying the parameter γ on the
CAPITOL dataset. We run the inference procedure for various values of γ larger than and equal to 1. Note that for γ = 1 the
pairwise potential becomes inactive and the algorithm reverts to the formulation of [2]. Fig. 2 presents the average precision
curves for [2], which we refer to as “SP”, [2] with pairwise terms, which we refer to as “SP+pairwise”, as well as our
algorithm. The average accuracy is computed as the area under the curve for the accuracy plots we used in the submission.
Thus, higher numbers are better. It can be observed that the “SP+pairwise” algorithm’s accuracy initially increases with γ.
This result is intuitive and suggests that the pairwise smoothness potentials are helping to obtain better accuracy, mostly due



to denser and smoother results. However, after a certain threshold, i.e. γ ≈ 2, the accuracy starts to decrease and continues to
decrease for larger values of γ. This is due to the shrinking bias inherent to the Potts model which removes more and more
of the surfaces from the reconstruction. Compared to the best accuracy the “SP+pairwise” model achieves, our algorithm is
significantly better as shown in Fig. 2. For all the experiments in the submission for the “SP+pairwise” algorithm, we used
γ = 1.75 that yielded the best quantitative results.
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Figure 2: Average precision plots for the CAPITOL dataset for the sum-product algorithm without spatial smoothness
terms [2], with pairwise smoothness terms, and our algorithm.

5. Evaluation for BARUS&HOLLEY Dataset Excluding the Trees and Vegetation

(a) Reference photo (b) Ground truth depth map rendering

Figure 3: The ground truth generated by Ulusoy et al. [2] for the BARUS&HOLLEY dataset is not very accurate around the
trees and other vegetation. Note the extrusion of the tree tops onto the ground.

As it was mentioned in the submission, the ground truth for the BARUS&HOLLEY dataset is not very accurate around the
trees and other vegetation. Ulusoy et al. generated this ground truth by extruding the LIDAR point cloud onto the ground
plane, assuming surfaces in the scene are mostly non-concave [2]. Although this assumption holds for buildings, roads, etc.,
it is violated for trees as shown in Fig. 3 and leads to incorrect ground truth around such tree regions.



(a) Reference photo (b) Depth map rendering of the ground truth excluding the trees

Figure 4: The clipped ground truth for BARUS&HOLLEY dataset. We removed one side of the building from the ground truth
mesh because it was being occluded by the trees.

In the BARUS&HOLLEY dataset, trees and vegetation occupy a large enough portion of the scene to affect the quantitative
evaluation. In order to reduce the effects of this incorrect evaluation, we crop the ground truth mesh provided by [2] and
remove the trees and vegetation as much as possible. The cropped mesh is shown in Fig. 4. We repeat the quantitative
evaluation using this new ground truth mesh. The accuracy plots are shown in Fig. 5.

We also visualize the errors in Fig. 6. Note that algorithms PM and LC make large mistakes around the textureless black
rooftop next to the building as shown in Fig. 9b+9c+9d. The sum-product result shown in Fig. 9e is much better on the
rooftop but still contains errors. In particular, a slightly reflective region of the rooftop contains a hole, leading to large
errors. We present enlarged images of the results on this region in Fig. 7. The baseline that incorporates pairwise smoothness
potentials into the sum-product formulation, which we refer to as “SP+pairwise”, produces less noisy and smoother results
as can be seen in Fig. 9f and Fig. 7f. However, Fig. 7f shows that the pairwise terms does not help with filling the large hole
on the rooftop. Instead, our result, displayed in Fig. 7g, shows that our algorithm is able to regularize the entire roof structure
and reconstruct the true roof geometry. Our algorithm accomplishes this regularization by propagating information from the
two gray beams on the rooftop, where there is little ambiguity due to the sharp edge features, into the middle of the roof,
where there is reconstruction ambiguity due to the reflective surface. Our overall result shown in Fig. 6g contains less error
throughout the entire scene compared to the sum-product result as well as the baseline with pairwise terms. Fig. 5 confirms
that our results are also quantitatively better than all other methods.
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Figure 5: Accuracy plots for the BARUS&HOLLEY dataset using the new ground truth mesh shown in Fig. 4.



(a) Image (b) PM (c) LC

(d) LC+MoG (e) SP (f) SP+pairwise

(g) Ours

Figure 6: Visualization of depth map prediction error for each algorithm using the clipped ground truth which excludes the
trees and vegetation.



(a) Image (b) PM (c) LC (d) LC+MoG

(e) SP (f) SP+pairwise (g) Ours

Figure 7: Visualization of depth map prediction error for each algorithm using the clipped ground truth that excludes the trees
and vegetation.

6. Additional Experiments using a Uniform Prior over Plane Normals
In this work, we utilize a Manhattan world prior on the plane orientations. We formulate this prior using a mixture of

von-Mises Fisher distributions:

ϕn
s (ns) =

K∑
k=1

wkM
(

ns
‖ns‖

∣∣∣∣ µk, κk) (41)

whereM (· | µ, κ) denotes the von Mises-Fisher distribution with parameters µ and κ. This choice of prior is reasonable
for the urban scenes we consider in this work because most surfaces are aligned with the X , Y or Z directions. In order to
demonstrate the effectiveness of our prior, we include a sample experiment that instead of using the Manhattan world prior,
utilizes a uniform prior over the plane orientations. For this experiment, we simply set the ϕn

s (ns) to a uniform distribution.
We present accuracy plots for the CAPITOL dataset in Fig. 8. It can be observed that our algorithm with the uniform

prior performs worse than using the Manhattan world prior. However, even when using this uniform prior, our algorithm
outperforms most other algorithms, and achieves comparable results to the sum-product, “SP”, result.

We visualize the errors in depth prediction in Fig. 9. It can be observed that the algorithm with the uniform prior over
plane orientations improves upon the the sum-product result, i.e. “SP”, which doesn’t contain any spatial priors, and also
significantly outperforms the sum-product algorithm with the pairwise smoothness potentials, i.e. “SP+pairwise”.

Fig. 9h shows that most of the errors are concentrated on the right side of the grass region. Note that the overall grass
region contains very few features and therefore contains a high degree of reconstruction ambiguity. Our analysis indicates
that for such ambiguous regions, plane proposals computed by RANSAC are not always reliable. In addition to the RANSAC
proposals, our algorithm utilizes the Manhattan world prior to generate further plane proposals that are aligned with the X ,
Y or Z directions, as discussed in Section 4.2 in the submitted document. As Fig. 9g shows, this strategy is successful in
reconstructing the correct geometry over the entire grass region. Instead, the algorithm with the uniform prior relies only on
the generic RANSAC plane proposals and has difficulty reconstructing the full grass region.
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Figure 8: Accuracy plots for the CAPITOL dataset using a uniform prior over the plane orientations.

(a) Image (b) PM (c) LC (d) LC+MoG

(e) SP (f) SP+pairwise (g) Ours (Manhattan world prior) (h) Ours (Uniform prior)

Figure 9: Visualization of the depth prediction errors for the CAPITOL dataset.

7. Varying Segmentation Granularities
For the experiments presented in the submitted document, we set the parameters of the superpixelization algorithm [3]

such that it generates roughly 500 segments. We empirically found this to be a reasonable tradoff between over- and under-
segmentation of the images. We have also generated segmentations that roughly contain 200 and 750 segments using the
same superpixelization algorithm [3]. Example segmentations can be seen in Fig. 10. Our initial experiments suggest that all
three segmentation granularities yield similar performance.



(a) 250 superpixels (b) 500 superpixels (c) 750 superpixels

Figure 10: Superpixel segmentation results with varying number of segments.
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