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in ���� trials and the di�erence, �1
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Figure � Comparison of performance of the inference algo-

rithm in deterministic (no noise) case, where feed-
back order is varying and feedforward order (red
plot) is either zero (blue plot) or equal to feedback
order. ��

Figure � Comparison of performance of the inference algo-
rithm in no noise case, where feedback order is vary-
ing and feedback order (red plot) is either zero (blue
plot) or equal to feedforward order. ��

Figure � Comparison of performance of the inference algo-
rithm in case where noise with di�erent amplitudes
is to data. Two cases are considered. For more de-
tails see the text. ��

Figure � The plots for di�erence between the estimators of
spectral expressions in both directions as a function
of window length chosen for Welch method. The
plot for gas furnace is on the left and for old geyser
is on the right. As one can see algorithm � will al-
ways pick the correct causal direction independent
of the window size. ��

Figure � Comparison of performance of the linear Granger
causality and spectral independence methods dur-
ing the linear session for themice “vvp��”. The dashed
line indicates when the performance is equal to �fty
percent. Formore information please refer to text. ��
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Figure � Comparison of performance of the linear Granger
causality and spectral independence method in the
sleeping session for the mice “vvp��”. The dashed
line indicates when the performance is equal to �fty
percent. Formore information please refer to text. ��

Figure � LFP recordings of all the channels for period be-
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I N TRODUCT ION

�.� ���������� ��������

Suppose that we have a dataset of observed pair of measurements x
i

,y
i

for
0 6 i 6 n from two observables X and Y. Moreover we are guaranteed that
the these observables are causally related in the sense that either X causes
Y, which we represent with X! Y or Y causes X which we represent with
Y ! X. The task is to di�erentiate the cause from e�ect.

To clarify what we mean by observables we give a few di�erent examples.
Suppose we are given n di�erent pairs of texts such that elements of each
pair are composed of an original text in English (German) and a translation
by Google translate to German (English). A human �uent in both languages
can easily identify the cause (the real text) from the e�ect (the translated
text) in all the cases without being hindered, even if n = 1. But yet, there is
no possible computational solution that could do the same task as good as a
human agent.

A more numerical example would be n pairs of recorded temperature and
height measurements in di�erent places in a geographic area. Its known a
priori that change of height in�uences the temperature but not vice versa.
However we are interested in a computational solution that could answer
the same question using observed data without an a priori knowledge of
their origin explicitly given to the computational solver.

Finally we explain an example from neuroscience. Recordings of brain
electrical activity at multiple scales, including Local Field Potentials, Elec-
trocorticograms and Electroencephalograms are important techniques for
analyzing and understanding the underlying brain activity [��] . One of the
chief applications of these methods is the localization of the focal region, re-
sponsible for triggering seizures in patients with medically refractory focal
epilepsy [��]. An application of causal inference is to �nd the directional
interactions between di�erent areas of the brain from the recorded signals,
and infer the source of pathological brain activity. This example is a prob-
lem of causal inference for time series, which usually calls for other speci�c
algorithm than causal inference for individual random variables.

A novel framework of causal inference has been recently established in
our laboratory [��], relying on the postulate of independence of cause and
mechanism (ICM). However, so far, no inference method dedicated to time
series has been developed based on this framework. The objective of our

�
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work is to propose theoretical foundations and algorithms for such amethod.
Since this will enable us to study how the methods based on the ICM pos-
tulate compares to other causal inference methods in the context of time
series.

�.� �������

In the following, the �rst chapter introduces the necessary mathematical ter-
minology and material.

The second chapter will give an overview on the history of causality and
causal inference. It also gives a brief introduction to available causal infer-
ence methods in machine learning. Then it focuses on an overview of causal
inference methods for time series problems (when observables as described
in previous section are changing over time). Finally we give a brief overview
of causality methods for time series that are applied to neural data and dis-
cuss some of their shortcomings.

In the third chapter we introduce a new framework which is based on the
following intuitive assumption that has been elaborated there:

“the cause is in some way independent from the mechanism that generates
the e�ect from cause.”

In chapter four we formulate the above principle in a mathematical frame-
work for these observables that are discrete time series.

In chapter�vewe derive some identi�ability results for thismethod;mean-
ing that we present assumptions that based on them one can derive cause
from e�ect on theoretical grounds. Moreover we sketch some connections
of this method to already established methods based on the intuitive inde-
pendence assumption stated above, namely causal inference method for ob-
servables related through high-dimensional linear relationships and causal
inference method for observables that are related through nonlinear rela-
tionships.

In chapter six we focus on the case where time series are Gaussian pro-
cesses and relate the method to a proposed causal inference scheme known
as Information Geometrical Causal Inference (IGCI) [��].

In chapter seven we apply our method to synthesized data and to real
world data and measure its e�ectiveness in practice.

Chapter eight has been dedicated to discussion over the results and about
the future works on this new causal inference method.



�.� ������� �

We have decided to keep part of the results developed in appendix; In this
part we explain another way of deriving the inference method proposed in
this thesis, with a di�erent approach and using the toolkits of linear operator
theory.





2
BAS IC TERM INOLOGY AND PREL IM INAR I E S

This chapter introduces the necessary mathematical toolkit for the upcom-
ing chapters. For the sake of clarity, we chose to gather here the necessary
basic notions and results from di�erent subjects and state them in their own
section. Moreover in this way the reader will always have the chance to refer
to this section to �nd the necessary information, for later-to-be-seen uses of
these terms and preliminary mathematical toolkits.

�.� ���� ���������

We represent anyN-dimensional complex (real) vector with bold characters
as z := (z

1

, ..., z
N

). For x 2 CN, kxk
p

represents the vector norm in CN

which is de�ned as:

kxk
p

=

8
<

:

p

qP
N-1

i=0

|x
i

|1/p if p 2 (0,+1)

max

06i6N-1

|x
i

|

where |x| represents the modulus (absolute value) of x. Also x̄ (or equiva-
lently x⇤) represents the complex conjugate of x. For any given pair of vec-
tors x and y in vector spaces V

1

and V
2

, x:y 2 V
1

�V
2

is the vector derived
from concatenating x and y. For a given k 2 R and interval I ⇢ R, Lk(I)
represents the set of measurable functions f such that the Lebesgue integralR
I

|f(x)|kdx is �nite. We represent the space of real (complex) valuedm⇥n

matrices withM
m⇥n(R) (and equivalentlyM

m⇥n(C)). For a given matrix
A, we represent the element in row i and column j with [A]

ij

.

�.� ����������� ������

We introduce here, some preliminaries from probability theory by means of
measure theory. For more on this one can refer to [��]. We believe this gives
a more rigour picture of all the probabilistic arguments in this thesis.

De�nition �. [��]

(i) A pair (⌦,A) consisting of a nonempty set⌦ and a �-algebraA ⇢ 2⌦

is called a measurable space. The sets A 2 A are called measurable
sets. If ⌦ is at most countably in�nite and if A = 2⌦ , then the mea-
surable space (⌦, 2⌦) is called discrete.

(ii) A triple (⌦,A,µ) is called ameasure space if (⌦,A) is a measurable
space and if µ is a measure on A.

(iii) If in addition µ(⌦) = 1, then (⌦,A,µ) is called a probability space.

�
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De�nition �. (Random variables). [��] Let (⌦,A) be a measurable space
and let X : ⌦ ! ⌦ 0 be measurable. X is called a random variable with
values in (⌦ 0,A 0). If (⌦ 0,A 0) = (R,B(R)) whereB(R) is the Borel algebra
of R then X is called a real random variable or simply a random variable.
Complex random variables are de�ned in the same way.

For a given random variableX from (⌦,A)withmeasure P to (⌦ 0,A 0),X⇤P
is the induced measure over (⌦ 0,A 0) de�ned as:

8A 0 2 A, X⇤P(A
0) = P(X-1(A 0))

Unless otherwise stated all the random variables have the same probability
space as domain (⌦,A,P).

De�nition �. (Absolute Continuity for Measures) For two given mea-
sures µ and ⌫ over measurable space (⌦,A), we say µ is absolutely continuous
with respect to ⌫ or ⌫⌧ µ if

⌫(A) = 0 for all A 2 A with µ(A) = 0.

A measure over (⌦,A) is called �-�nite if there exist a sequence⌦
i

2 A

such that
S
⌦

i

= ⌦ and µ(⌦
i

) < 1 for any i.

Theorem �. (Radon-Nykodim Derivative) Let µ and ⌫ be �-�nite mea-
sures on (⌦,A) and moreover suppose ⌫ ⌧ µ. Then there exist a function
f : ⌦ ! [0,1) called the Radon-Nikodyim derivative of µ with respect to ⌫
that satis�es

8A 2 A, µ(A) =

Z

A

dµ =

Z

A

fd⌫.

One represents f usually with dµ

d⌫

. f is also called the density of µ with respect
to ⌫.

Suppose X is a random variable with domain measure P and values in
(⌦ 0,A 0) and given the reference measure µ over A 0. If µ⌧ X⇤P then den-
sity with respect to µ is de�ned as the Radon-Nikodym derivative dX⇤P

dµ

.
When µ is the Lebesgue measure, we write dX⇤P

dµ

as p
X

(x) and this is the
so called probability density function. Throughout the document for a given
random variable X, P

X

represents its measure over domain and p
X

repre-
sents its density with respect to Lebesgue measure in case of existence.

For a given (complex) random variable X, we de�ne its expected value
denoted by E

P

(X) as

E
P

(X) :=

Z

⌦

XdP.
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For two complex random variables X and Y and a given reference measure
µ, the standard covariance function is de�ned [��, p. ���] as

Cov

µ

(X, Y) :=

Z

⌦

X ¯Ydµ-

Z

⌦

Xdµ

Z

⌦

¯Ydµ

As a special case the variance of a complex valued random variable X with
respect to measure µ is de�ned as

Var

µ

(X) := Cov

µ

(X,X).

In all the cases unless there is no confusion on the reference measure we
omit the subscript of the measure in the above de�nitions.

�.� ���� ������

�.�.� Deterministic Time Series

We refer to a sequence of real numbers {x
t

, t 2 T } (which can also be se-
quence of complex numbers and even a sequence of vectors) as a determin-
istic time series. When the index set T is already known we use the shorter
notation of {x

t

}. We interchangeably use sequence notations to refer to de-
terministic time series, or equivalently wemight also consider x(t) as a func-
tion of t which in some cases represents the time.

For a deterministic time series, when x(t) is a function on R, i.e. T = R, if
x(t) 2 L1(R), we represent the Fourier transform [��, pp. ���] of it denoted
as x̂

⌫

(or F({x
t

})) with:

x̂
⌫

=

Z1

-1
x
t

e-2⇡i⌫tdt,

and in case x̂(⌫) is in L1(R) then x is called its inverse Fourier transform
and one has [��, pp. ���]

x
t

=

Z1

-1
x̂
⌫

e2⇡i⌫td⌫.

When T = Z (a.k.a discrete time series) we use the following de�nition for
Fourier transform with the same notation if {x

t

} 2 l1(Z):

8- 1

2
6 ⌫ 6 1

2
x̂
⌫

=
1X

-1
x
t

e-2⇡i⌫t

,

and when x̂
⌫

2 L1([-1

2

,

1

2

) then the inverse Fourier transform is de�ned
as:

8t 2N x
t

=

Z 1

2

- 1

2

x̂
⌫

e-2⇡i⌫td⌫.
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Plancherel theorem states that when {x
t

} and {y
t

} are in L2(R) (T = R),
then

Z1

-1
x(t)y(t)dt =

Z1

-1
x̂(⌫)ŷ(⌫)d⌫,

which also holds for discrete case when the integral on both sides are re-
placed with proper sums. For a given deterministic time series, C

x

(⌧) will
represent its autocorrelation function:

C
x

(⌧) :=

Z1

-1
x(t)x(t+ ⌧)dt.

And we de�ne the energy spectral density to be:

S
xx

(⌫) := |x̂(⌫)|2 (�)

Then one can show that

C
X

(⌧) =

Z1

-1
e2⇡i⌧⌫S

xx

(⌫)d⌫

S
xx

(⌫) =

Z1

-1
e-2⇡i⌧⌫C

x

(⌧)d⌧.

We use  ({x
t

}) to represent the overall energy of x(t)

 ({x
t

}) =

Z1

-1
|x

t

|2
⇤
=

Z1

-1
|x̂

⌫

|2 =

Z1

-1
S
xx

(⌫)d⌫ = C
x

(0)

where the (*) is based on Plancherel’s theorem.

For any two deterministic time series {x
t

} and {y
t

} the convolution be-
tween {x

t

} and {y
t

} denoted as {x
t

} ⇤ {y
t

} is a function on the same index
set T de�ned as

({x
t

} ⇤ {y
t

})(⌧) =

Z1

-1
x
⌧

y
t-⌧

dt

�.�.� Stochastic Time Series and Processes

Most of the terminology with regard to time series and stochastic processes
are from [��]. A stochastic process is a family of random variables {X

t

, t 2 T }

de�ned on a probability space (⌦,A,P) and T is the index set. For any ran-
dom variable X : ⌦! E and! 2 ⌦, X(!) is one realization of X. Similarly
for a given ! 2 ⌦ the family {X

t

(!)} is a realisation of the stochastic pro-
cess. For a given index t we use {X

t

} to represent the random variable at
index t. In what follows except when explicitly stated otherwise, T = Z.
We use {X

t

} to represent the complete stochastic process and we use X
t:s to

indicate the time series between two time instances when there exist a nat-
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ural order over index set. We also use { ˜X
t

} to represent the reverse process,
i.e. { ˜X

t

} is the process where

8t 2 Z ˜X
t

= X-t

.

We use the same notation for time reversal of a sequence.

Throughout we may assume that stochastic processes considered are all
zero mean, i.e. for any {X

t

}, E
P

({X
t

}) = 0. In cases where our index set T is
Z, we only consider stochastic time series that arepurely non-deterministic
unless explicitly stated otherwise. A purely nondeterministic process is de-
�ned as follows:

De�nition �. [��, p. ��] (Purely nondeterministic processes) For a given
stochastic process {X

t

}, take H
n

(X) to be the subspace of L2(⌦,P) spanned
by X

k

for k 6 n. A weakly stationary process is said to be deterministic if

H
n

(X) = H
n+1

(X), n 2 Z

and purely nondeterministic if
\

n2Z

H
n+1

(X) = {0}, n 2 Z.

Remark �. [��] It can be shown that a weakly stationary process X is purely
non-deterministic if and only if the spectral distribution function is absolutely
(see theorem � for de�nition) continuous with respect to Lebesgue measure and
its SDF (see theorem � for de�nition) S

xx

(⌫) satis�es
�����

Z 1

2

- 1

2

log(S
xx

(⌫))d⌫

����� < 1.

For a given stochastic process {X
t

} and given time instances t, s the autoco-
variance function C

X

(t, s) is de�ned as

C
X

(t, s) = Cov

P

(X
t

,X
s

) = E
P

(X
t

X
S

)- E
P

(X
t

)E
P

(X
S

) = E
P

(X
t

X
s

),

based on the assumption that stochastic processes considered are zero mean.
Similarly, the mean of a time series µ

X

is de�ned as:

8t, µ
X

(t) := E
P

(X
t

).

Its important to note that none of these functions are necessarily de�ned for
all time instances. A process is called zero mean if

8t, µ
X

(t) = 0.

In the context of time series analysis a speci�c family of stochastic processes
known as stationary processes plays a fundamental role. It is de�ned as fol-
lows:
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De�nition �. (Weak stationarity)[��] The time series {X
t

, t 2 Z}, is said
to be weakly stationary (or stationary in wide sense) if

(i) E
P

|X
t

|2 < 1 for all t 2 Z,

(ii) µ
X

(t) = m for all t 2 Z

(iii) C
X

(r, s) = C
X

(r+ t, s+ t) for all s, t, r 2 Z

Remark �. For a weakly stationary time series since the autocovariance func-
tion is invariant under shift of time (condition (iii) in de�nition �) we represent
the autocovariance function with a single argument:

C
X

(⌧) := E
P

⇥
X
t

X
t+⌧

⇤

where ⌧ is said to be the lag of the autocovariance function.

For a given deterministic time series {x
t

}, the Fourier transform provides
a representation of time series known as frequency domain representation.
For the purpose of this thesis we want to generalize this frequency domain
representation to stochastic processes; for weakly stationary stochastic pro-
cesses when T = Z (and even when T = R) one has the following theorem
known as Wiener-Khintchine theorem.

Theorem �. (Wiener-Khintchine theorem)[��, pp. ��] Suppose a real-
valued weakly stationary process {X

t

} is given whereC
X

(⌧) exists for every lag
⌧. Then there exist a monotonically increasing function F de�ned on [-1

2

,

1

2

)
such that

C
X

(⌧) =

Z 1

2

- 1

2

e2⇡i⌧⌫dF(⌫).

Moreover since {X
t

} is purely nondeterministic, F is absolutely continuous with
respect to the Lebesgue measure. Take S

xx

(⌫) to denote this density. Then

C
X

(⌧) =

Z 1

2

- 1

2

e2⇡i⌧⌫S
xx

(⌫)d⌫

S
xx

(⌫) =
1X

k=-1
e-2⇡ik⌫C

X

(⌧)

S
xx

(⌫) is the density function associated with F which is called spectral
density function (SDF). This means that C

X

and S
xx

are Fourier trans-
form pairs. For a zero mean weakly stationary stochastic time series {X

t

}

we de�ne P(X
t

) to be the power of the time series as

P(X
t

) = C
X

(0) = E
P

(X2

t

) =

Z 1

2

- 1

2

S
xx

(⌫)d⌫
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Remark �. We might as well use other equivalent terms for this SDF such as
power spectral density or simply power spectrum interchangeably.

We will also need the notion of white noise process. A white noise pro-
cess is a weakly stationary process where the autocovariance function is
zero for any nonzero argument. A Gaussian white noise process is a white
noise process where the underlying �nite joint distributions are Gaussian.

�.�.� The special case of �nite circular time series

For the purpose of this thesis, it is interesting to draw a link between in�-
nite weakly stationary time series and �nite random sequences with similar
invariance properties. We thus introduce the necessary formalism to de�ne
circular translation invariant sequences. For this we elaborate on spectral
properties of deterministic and weakly stationary �nite time series.

A special case of Fourier transform known as Discrete Fourier Transform
(DFT) for a �nite time series {x

t

} where 0 6 t 6 N- 1 is de�ned as

80 6 k 6 N- 1 x̂
k

=
N-1X

k=0

x
n

e-2⇡ik

n

N

.

It can be shown that there exist a unitary matrix UF such that for any time
series of length N represented as a vector x = {x

t

}, one has

x̂ =
p
NUx,

where x̂ is the vector representation of {x̂
⌫

}. For any two vectors x,y 2 RN,
one can de�ne the circular convolution of these two z = x ⇤

c

y as

z
t

=
N-1X

i=0

x(i)
N

y(t-i)
N

where (m)
N

means m modulo N. A circulant matrix C 2 M
N⇥N(R) is a

matrix where

8k 2 Z [C]
ij

= [C](i-k)
N

(j-k)
N

]

Fourier transformmatrixUF is circular and therefore it can be easily shown
thatUFx is equivalent to circular convolution of x with the �rst row ofUF .
It can be shown that UF diagonalizes any circulant matrix, i.e. UFCU

>
F is

a diagonal matrix for any circulant matrix C. The diagonal elements in this
case will be the eigenvalues of C and as a result one has

tr(UFCU
>
F ) = tr(C) (�)

Based on this version of Fourier transform we derive an equivalent of
Wiener-Khintchine theorem for stochastic processes with �nite length. To
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this end, we de�ne a process {X
t

} which satis�es X
t

= X
t+N

for a givenN

and for any t. To impose such a structure on a process pick a random vector
Z of dimension N such that

8t 2 Z, X
t

= Z(t)
N

In such a case {X
t

} is called a circular process [��]. Since all the informa-
tion of this process is con�ned to X

0:N-1

we only consider this part of the
process. We de�ne Fourier transform for X

0:N-1

asUFXwhereX is Zwith
some overload of notation. If we name the covariance matrix associated with
X as ⌃

X

, one can notice that the �rst row of this matrix exactly represents
C
X

(k) (again for the same con�ned length). Furthermore for C
X

(k) seen as
a vector it can be shown [��, pp. ���] that

diag(UFCX

) = UF⌃X

U>F ,

where diag(v) is a diagonalmatrixwith elements of vector v over its principal
diagonal. Therefore representing the Fourier transform of C

X

with S
xx

we
realize that the diagonal elements of UF⌃X

U>F are nothing but S
xx

. We
consider S

xx

as the power spectral density of {X
t

}. Moreover using eq. (�)
we get

1

n

n-1X

⌫=0

S
xx

(⌫) = C
X

(0).

�.�.� Gaussian Processes

Finally sincewe investigate some properties only for special processes known
as Gaussian Processes, we introduce them here. We restrict our attention to
one dimensional real Gaussian processes, i.e. the processes where at each
index, the random variable is real valued. In the following de�nition T 2
{Z, R}.

De�nition �. A stochastic process {X
t

, t 2 T }, is a Gaussian processes if
the joint distribution associated with any �nite set of indices is a multivariate
Gaussian distribution. We de�ne K

xx

: T ⇥ T ! R as the covariance kernel
(covariance function) of the process, i.e. the gram matrix of this kernel over
t
1

, ..., t
n

2 T is the covariance matrix of the multidimensional Gaussian as-
sociated with these indices in the process. Moreover µ

X

: T ! R is the mean
function associated with the process, i.e.

µ
X

(t) = E
P

(X(t)) = 0.

�.� ����������� ������ ��� ����������� ��������

Measures of information theory have been proved to be of utmost impor-
tance in theoretical and applied sciences. One of the most important usage
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of these measures is for quantifying independence between events and ran-
dom variables. Since independence plays a crucial role in inferring causal
relationships, information theory is an important tool in causal inference
methods.

De�nition �. (Relative Entropy) For two given probability measures P and
Q over the same measure space if Q ⌧ P the Kullback-Leibler, relative en-
tropy, or KL divergence of P with respect to Q is de�ned as

D
KL

(PkQ) =

Z
log(

dP

dQ
)dP

where dP

dQ

is the Radon-Nikodym derivative.

When both P andQ are absolutely continuous with respect to a reference
measure µ (mostly Lebesgue) with densities p

µ

and q
µ

respectively and
moreover Q⌧ P, then we get:

D
KL

(pµ||q
µ

) := D
KL

(PkQ) =

Z
log(

dP

dQ
)dP =

Z
p
µ

(x) log(
p
µ

(x)

q
µ

(x)
)dµ(x)

And in case of the Lebesgue measure we get:

D
KL

(p||q) :=

Z
p(x) log(

p(x)

q(x)
)dx

One can notice that the above de�nition includes the discrete case, where
⌦ is at most countably in�nite space; then the integral turns to summation
and density will be taken with respect to counting measure. This is true
for any other integration throughout the article. Based on this de�nition
we introduce a notion from information geometry namely orthogonality in
information space.

De�nition �. (Orthogonality in Information Space) For given densities
p(x),q(x), r(x) de�ned over a given spaceX, we say (p,q, r)makes a Pythagorean
triple i�

D
KL

(pkq) = D
KL

(pkr) +D
KL

(rkq).

Then it is said that the vector connecting p to r is orthogonal to the vector
connecting r to q, when densities are seen as in�nite dimensional vectors.

Finally we state a lemma that will be later used to extend the observation
of theorem � to discrete Gaussian processes. Before, we need to de�ne the
notion of relative entropy rate.

De�nition �. [��] Let X = {X
t

} and Y = {Y
t

} be discrete stochastic processes.
The relative entropy rate ¯D(P

X

t

kP
Y

t

) is de�ned as

¯D(P
X

t

kP
Y

t

) := lim

N!1

1

2N+ 1
D

KL

(P
X-N:NkPY-N:N)
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where P
X-N:N stands for the joint measure over X-N

, ...X
N

.

Lemma �. [��] Let X = {X
n

: n 2 Z} and Y = {Y
n

: n 2 Z} be zero
mean purely nondeterministic weakly stationary discrete Gaussian processes
with SDF’s S

xx

and S
yy

, respectively. Then the relative entropy rate is given
by

¯D(P
X

n

kP
Y

n

) =
1

2

Z 1

2

- 1

2

⇣S
xx

(⌫)

S
yy

(⌫)
- 1- log

S
xx

(⌫)

S
yy

(⌫)

⌘
d⌫

provided that at least one of the following conditions is satis�ed.

(i) S

xx

(⌫)
S

yy

(⌫) is bounded

(ii) S
yy

(⌫) > a > 0 for all ⌫ 2 [-⇡,⇡] and S
xx

2 L2[-⇡,⇡]

�.� ������ �������

For any input output system, a main concern is to model the system be-
haviour, i.e. to be able to predict the output of the system given a history
of input [and maybe outputs]. We will consider the case of deterministic
system; this means that there exist a function S associated with the system
such that:

S({x
t

}) = {y
t

}

where {x
t

} and {y
t

} are real valued inputs and outputs of the system respec-
tively. More speci�cally we mean that each value {y

t

} is a function of all
the {x

t

} values; in a context where t represents time, this indicates a system
(function) that depends on past and/or future of the input. When the output
of a �lter depends only on the past inputs to the �lter the �lter is called a
causal �lter(system). Linear systems are a special case of this family which
are extensively studied partly for the reason that their study is analytically
more tractable and partly because they can provide a framework for the
study of nonlinear systems [��, ��]. A system is called linear if for any given
pairs of time series {x1

t

} and {x2
t

} as inputs and for any real ↵ and �we have:

S(↵{x1
t

}+�{x2
t

}) = ↵S({x1
t

}) +�S({x2
t

})

Moreover we focus our attention over systems whose behaviour is invariant
under time shift known as time(shift)-invariant systems. More precisely a
system is said to be time invariant if, assuming {x

t

} and {y
t

} are input and
output pairs of S for all t

8⌧ 2 Z, S({x
t-⌧

}) = {y
t-⌧

}.

The systems satisfying both properties are known as Linear Time Invari-
ant(LTI) systems (�lters). The LTI �lters with discrete time inputs and out-
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puts are the main subject of our study in section �.�.�.

Proposition �. [��] For any LTI system there exist a function known as im-
pulse response function h(t) such that for any {x

t

} where one has {y
t

} =
S({x

t

}) then

8⌧ 2 T y
⌧

= ({x
t

} ⇤ {h
t

})(⌧).

We may denote the impulse response function with h
t

or simply as h
interchangeably. When the space of inputs two an LTI �lter is based on a
weakly stationary process then one can also derive the following:

Proposition �. [��] For a weakly stationary stochastic process {X
t

} the output
of an LTI system S {Y

t

} is weakly stationary as well. Moreover if  ({h
t

}) < 1
then

8⌫ 2 R S
yy

(⌫) = S
xx

(⌫)| ˆh(⌫)|2

Proposition � is closely connectedwith some of the statements in appendixA.�
since autocovariance functions for weakly stationary processes are positive
de�nite functions.

Remark �. We con�ned our discussion to systems with real valued inputs and
outputs mostly for the sake of clarity. Most of the properties indicated here can
have equivalents for inputs and outputs belonging to other domains, e.g. vectors
and complex number. Same is true for the index set that has been taken to be
integer numbers but it can be e.g. continuous like R and then under some mild
conditions the same properties will hold again.

We also de�ne the notion of inverse �lter; for an LTI S, when the transfer
function (Fourier transform of impulse response function) is not vanishing,
one can show that the �lter that takes as its input the output of S and gener-
ates its input which we denote with S-1, has an impulse response function
h(-1) such that

\h(-1)
⌫

=
1
ˆh
⌫

.

We call such a �lter the inverse �lter associated with S.

�.�.� IIR and FIR systems

Since some of the results in this thesis are based on an special type of �l-
ters known as In�nite Impulse Response (IIR) and Finite Impulse Response
(FIR) �lters, we introduce these type of �lters explicitly. When the impulse
response function h

t

of an LTI is only nonzero in �nitely many points then
the �lter is known as FIR �lter. The notion of IIR �lters is closely related to
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digital �lters. Digital �lters that are heavily used in signal processing disci-
pline are usually de�ned in terms of di�erence equations, i.e. the equations
of the form:

y [n] =
1

a
0

(
PX

i=0

b
i

x[n- i] +
QX

j=1

a
j

y[n- j]).

One can check that a �lter based on this de�nition is LTI. Such LTI �lters
are known as In�nite Impulse Response systems (�lters). For these �lters P
is known as feedforward order which we shortly represent as FO,Q is feed-
back order which we abbreviate to BO. a

i

’s and b
i

’s are known as feedback
and feedforward coe�cients respectively.Wewill interchangeably represent
these coe�cients as vectors a and b and as a pair (a, b). When all the a

i

’s
(except a

0

) are zero the �lter is a causal FIR �lter. In the context of stochas-
tic time series, if the input to the IIR �lter (X

i

’s) would be white noise then
such a data generating model is called an Auto Regressive Moving Average
(ARMA) model.

�.� ������ �������

We con�ne our discussions here to linear operators that are known as in-
tegral operators and also to linear operators known as in�nite dimensional
matrices. We start by de�ning these two terms.

De�nition ��. (Integral Operator) [�, pp.��] Let TL : C0[a,b]! C0[a,b]
be a linear map, where L : [a,b]⇥ [a,b]! R is a continuous function. For a
given f 2 C[a,b], de�ne g = TL(f) as

8y 2 [a,b], g(y) = TL(f)(y) :=

Z
b

a

L(y, x)f(x)dx (�)

where L is called the kernel of TL.

With some overload of notation, in case there is no confusion we refer to L

as the linear operator and kernel itself. In a quite similar way one can de�ne
the in�nite dimensional matrices.

De�nition ��. (In�nite Dimensional Matrix) Let TL : RZ ! RZ be
a linear map and also assume L : Z ⇥Z ! R is a function. For a given
deterministic time series {x

t

, t 2 Z, TL({xt}) is de�ned as

8⌧ 2 Z, y
⌧

= TL({xt}) =
1X

k=-1
L(⌧, k)x

k

, (�)

where L is called an in�nite dimensional matrix.

Again with some overload of notation we use L({x
t

}) instead of TL({xt}).
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We also can de�ne the composition of two linear operators say L and K

as

8x,y 2 T (KL)(x,y) :=

Z
K(x, z)L(z,y)dz

where T is either Z or R in our case, and in the former the integral becomes
summation. It can be seen as in the case of matrices, L acts on K from the
right and therefore on its second argument while on the other hand K acts
on L from left and therefore it acts on the �rst argument of L in the inte-
gral (summation in discrete case). In this sense its similar to the di�erence of
act of linear operator over an input from the left and right. There too, (f)L
and ({x

t

})L are de�ned in the same way as eqs. (�) and (�) except that in-
tegration and summation takes place over the second argument respectively.

A linear operator L is said to be shift invariant if L(t, s) = L(t+ ⌧, s+
⌧) for all t, s and ⌧ in Z. For a shift invariant operatorLwe de�ne a function
�L as

8t 2 Z �L(t) = L(0, t). (�)

This function carries all the information about L, i.e. one can also construct
L from �L with eq. (�), since L is shift invariant. For a linear operator L,
L> is the unique operator satisfying

hLf,gi = hf,L>gi

known as transpose of L. In the next two lemmas we show that the space
of shift invariant operators is closed under transposition and under compo-
sition of shift invariant operators.

Lemma �. (Closedness under transpose) For a shift invariant linear op-
erator L, L> is shift invariant and moreover one has

�L> = ˜�L.

Proof. Take any f 2 l2(Z) and g 2 l2(Z). We have

hLf,gi = h�L ⇤ f,gi =
1X

t=-1
g(t)

1X

⌧=-1
�L(t- ⌧)f(⌧) =

1X

t=-1
g(t)

1X

⌧=-1

˜�L(⌧- t)f(⌧)

and changing the order of summation gives

hLf,gi =
1X

⌧=-1
f(⌧)

1X

t=-1

˜�L(⌧- t)g(t) = hf, ˜�L ⇤ gi (�)
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Now de�ne L 0 to be the operator associated with ˜�L. Uniqueness of trans-
pose of an operator and Equation (�) shows that L 0 = L>.

Lemma �. (Closedness under composition) For any pair of translation
invariant linear operators L andH, LH is translation invariant and we have

�LH = �L ⇤�H

Proof. Take any f in the domain ofH. Then

8y 2 Z LH(f)(y) = L

 1X

x=-1
H(·, x)f(x)

!

(y) =

1X

z=-1
L(y, z)

1X

x=-1
H(z, x)f(x) =

1X

z=-1
�L(y- z)(�H ⇤ f)(z) =

(�L ⇤�H ⇤ f)(y)

where the �nal equation follows from associativity of convolution operation.

De�nition ��. For any in�nite dimensional matrix with kernel L, we de�ne
its normalized trace L as

TL = lim

N!1

NP
k=-N

L(k, k)

2N+ 1

when this limits exists. For an integral operatorL over R de�ne the normalized
trace as

TL = lim

⌧!1

R
⌧

-⌧

L(t, t)dt

2⌧

when the above limit exists.

Remark �. For a linear operator with translation invariant kernel L, normal-
ized trace is always de�ned and its equal to �L(0).

A real valued function � is positive de�nite if the shift invariant Kernel
de�ned as K(x,y) = �(x- y) is positive de�nite.

Theorem �. (Bochner’s Theorem). [��] A continuous complex-valued func-
tion � on R is positive de�nite if and only if it can be represented as

�(⌧) =

Z

R

e2⇡i⌫⌧dµ
�

(⌫) (�)

where µ is a positive �nite measure.
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Corollary �. Suppose the assumptions of Bochner’s theorem hold and suppose
that µ

�

has a density S
�

with respect to the Lebesgue measure. Then

�(0) =

Z

R

e2⇡i⌫⌧dµ
�

(⌫) =

Z
S
�

(⌫)d⌫

S
�

is called the spectral density of �.

Remark �. All of the results above can be extended to continuous linear oper-
ators with change of summation notation to integration when necessary.

We will also need some results regarding the largest eigenvalues of matri-
ces and the relation to the largest eigenvalues of their submatrices.

Theorem �. [��] Let M be an n ⇥ n Hermitian matrix and �
1

, ..., �
n

its
eigenvalues arranged in increasing order, counted with multiplicity. Then

�
k

= min

dimF=k

max

x2F\{0}

x

⇤Mx

kxk2
2

where the minimum is taken over k-dimensional vector spaces of C.

De�ne ⇢(A) as the largest eigenvlue of a given hermitian matrix A. A
submatrix of a matrix A, is a matrix obtained by deleting some rows and
some columns of A. A submatrix is called principal if the deleted rows and
columns have the same index. Then this follows from the above theorem.

Corollary �. For a given Hermitian matrixH and any principal submatrix of
H, H 0 one has

⇢(H) > ⇢(H 0).





3
SOME PR INC I P LE S OF CAUSAL IN FERENCE

In this chapter we give an overview on the history of causal inference and
put emphasis on frameworks in the machine learning community. We then
explain the limits of causal graphical models relying on the Markov condi-
tion [��, ��] and speci�cally causal faithfulness to derive causal relations
and introduce a recent framework [��] that can address these problems. We
explain two di�erent approaches based on this framework. Finally we dis-
cuss the application of causal inference methods for time series and more
speci�cally for neural data and point out some of their shortcomings.

�.� ������� �� ��������� ��� ������ ���������

Causal inference is nowadays considered as one of the new branches of ar-
ti�cial intelligence [��] that has attracted a lot of attention from di�erent
disciplines of science in the last two decades, since causal relations can pro-
vide predictability under manipulation which is not the case for approaches
based on statistical dependency, e.g. correlation. In the following section,
we try to sketch a short introduction and history on causality and causal
inference. A detailed introduction of causality can be found in [��]. For a
chronological list of contributors to the �eld, one can refer to [�].

The early studies on causality date back to Aristotle and Plato, and it has
since then been a topic of interest for many philosophers such as Kant, Leib-
niz, Hume, Russel to name only a few. It remains an important topic for phi-
losophy hitherto which has developed into many branches [��]. As a �rst
step towards experimental sciences, the systematic study of causality as a
problem of inference based on observational data goes back to the seminal
work of Sewall Wright [��], where he de�nes for the �rst time causal net-
work models. This approach has been later developed mainly through the
works of H. Simon [��–��], J. Pearl [��] and P. Spirtes [��]. The work of the
latter two mainly relies on representing causal relations based on Bayesian
nets. Pearl introduced the notion of Functional Causal Models and together
with Spirtes advocated the application of two postulates: the Causal Markov
Condition andCausal Faithfulness (with a di�erent terminology in Pearl) into
the �eld of causality. Its worthwhile to note that the application of Markov
condition in causal inference is due to the seminal work of Hans Reichen-
bach relevant to the common cause principle [��, pp. ���].

Causal Markov condition states that for any Bayesian network with vari-
able set V , its joint distribution P satis�es Markov condition, i.e. the condi-
tional distribution (based on P) of any node given its parents is independent

��
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of its non-descendants in the Bayesian net [��, pp. ��]. Faithfulness which
complements the Markov condition asserts that all the conditional indepen-
dences of P are entailed by Markov condition [��, pp. ��]. Although frame-
works relying on these two assumptions improved the science of causal dis-
covery astonishingly, they also had their shortcomings.

One major problem is that applying these methods on considerably large
Bayesian networkswill usually infer large family of equivalent causal graphs
that all are able to explain the observed independences without the possibil-
ity of further progress on identifying the ground truth causal graph. Even
when the family of these equivalent classes is not large it can still be prob-
lematic; A striking example of this type is deciding the cause and e�ect in
bivariate networks, i.e. X! Y or Y ! X.

The second problem is that these methods rely on the possibility of sam-
pling in an identically and independently distributed (i.i.d) manner. Indeed,
many real world problems have time-varying observations and cannot be
well modelled using the i.i.d. assumption on observed data, or involve sam-
ple sizes so small that assessing statistical independence is challenging or
impossible. A noticeable example of the latter issue is the causal inference
based on single observations. Although the �rst problem can be addressed
through available methods in classical statistics of inference on time depen-
dant data, the second problem remains unsolved using these conventional
methods. In the next section we introduce a framework that can naturally
address these problems.

�.� ������������ �� ����� ��� ��������� (���)

Based on a preliminary idea by Lemeire andDirkx [��], Janzing and Schölkopf
[��] established a new framework for causal inference based on the mini-
mum description length principle. We illustrate an intuitive view of their
theory: They assume that the cause and mechanism are independent in the
sense that they have been chosen by nature through two di�erent processes.
But more precisely suppose we represent the random variable for cause with
C and the random variable for e�ect with E. They argue that among factor-
ization of the joint probability of cause C and e�ect E P(C,E), into P(C|E)
and P(E), the factorization re�ecting the underlying causal structure typi-
cally leads into simpler expressions of P(C|E) and P(E) in terms of mini-
mum description length (Kolmogorov complexity) [��, ��, ��]; this on the
other hand means that P(E) and P(C|E) in the correct causal model are al-
gorithmically independent in terms of Kolmogorov complexity. Throughout
this manuscript, we will refer to this framework as Independence of Cause
and Mechanism (ICM). Since the Kolmogorov complexity is not computable,
practical methods relying on the ICM postulate must resort to other, com-
putable, complexity measures.
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One of the main applications of ICM addresses the case of deterministic
relation between the cause and e�ect, i.e. there exist a deterministic func-
tion f such that E = f(C). More precisely assuming that for two observed
random variables X and Y where Y = f(X) and the ground truth is either of
X ! Y or Y ! X, the objective is to identify the correct underlying causal
relationship. Since in this case there is no noise, most of the available tech-
niques to address causal inference for bivariate data like [��, ��, ��] become
ine�ective. Based on ICM, [��, ��, ��, ��] introduced methods for inferring
causal directions in this scenario.

More speci�cally [��, ��] address the case where f is a linear high dimen-
sional function, i.e. E = AC where A is a matrix and E and C are multidi-
mensional random variables. In this case the method exploits the covariance
structure of the cause and e�ect vectors. [��] on the other hand assumes
deterministic relations where f is nonlinear and exploits the possible depen-
dency between the non-linearity of f and the distribution of cause and e�ect
using information geometric measures. Finally [��] hints to a connection be-
tween these two ICM-based methods – for linear high-dimensional relations
and nonlinear relations – through information geometry for the Gaussian
case. We will give a brief overview of these methods in the next section.

�.�.� ICM for Deterministic Nonlinear Relations

Assume a given pair of observed random variables X and Y with Y = f(X)
where f is a nonlinear di�eomorphism and the objective is to �nd the ground
truth which is either of X! Y and Y ! X.

To this end we also introduce u
X

and u
Y

as appropriate reference mea-
sures for X and Y de�ned on domains of X and Y (as functions) respectively.
By reference measure here what we mean is a measure that is used to quan-
tify the irregularities that are present in densities of the input and output ob-
servables and also the irregularities of the functional relationship between
the two. And by appropriate referencemeasure we refer to measures that are
based on the problem domain seem to be reasonable to capture the aforemen-
tioned irregularities. For more elaborated explanation of reference measures
one can refer to [��]. In the cases studied so far, these measures are taken to
be either uniform or Gaussian.

De�ne  p
X

and !p
Y

as the images of u
X

and u
Y

under f-1 and f respec-
tively. Then [��, ��] propose the following postulate for inferring the causal
direction based on ICM:

Postulate �. If X! Y, then

D
KL

(p
Y

ku
Y

) = D
KL

(p
X

ku
X

) +D
KL

(
!
p
Y

ku
Y

) (�)
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Since this postulate is de�ned based on information geometric quantities,
it is known as Information Geometric Causal Inference (IGCI). It can be shown
that whenever this postulate holds in one direction it cannot hold in the
other direction. More precisely one has:

Theorem �. [��, Thm. �] Let f be non-trivial in the sense that the image of
u
X

under f does not coincide with u
Y

. If eq. (�) holds, then one gets

D
KL

(p
X

ku
X

) < D
KL

(p
Y

ku
Y

) +D
KL

(
 
p
X

ku
X

)

�.�.� ICM for Deterministic Linear High-dimensional Relations (Trace Con-
dition)

A causal inference framework for the study of multidimensional determin-
istic linear functions has been developed in [��, ��]. We brie�y explain this
framework here. Suppose that the data generating mechanism from a given
input vector X 2 Rm is a matrix A 2M

m⇥n(R) and:

Y = AX. (�)

Then the independence of cause and mechanism in such a relation has been
interpreted as follows:

Postulate �. (Trace condition) In a linear functional relationship such as
eq. (�) where X is the cause, the following equation holds approximately

⌧(A⌃
X

A>) = ⌧(⌃
X

)⌧(AA>),

where ⌧(L) is the normalized trace for a given matrix L 2M
n⇥n(R), i.e.

⌧(L) :=
tr(L)

n

To investigate to what extent such an assumption holds [��] introduces
�
X!Y

as follows

�
X!Y

:= log ⌧(A⌃
X

A>)- log ⌧(⌃
X

)- log ⌧(AA>) (��)

�
Y!X

:= log ⌧(⌃
X

)- log ⌧(⌃
Y

)- log ⌧(A-1A->). (��)

For a reason that will be clari�ed later we will make use of this expression
for the case whereA 2M

n⇥n(R) and as a result for such a nwe represent
our expression with �n

X!Y

. In the next theorem which is one of the identi�-
ability results derived for this ICM-based framework, O(N) is the group of
orthogonal matrices of order N.

Theorem �. [��] (CoM for�nite dimensional linear relationships) Sup-
pose ⌃ is a given covariance matrix and suppose A 2 M

n⇥m(R) is also a
given matrix. Then if one generates ⌃

X

= U⌃U> by uniformly choosing an
orthogonal matrix U from O(n) then ⌃

X

together with A, satis�es trace con-
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dition in probability when n tends to in�nity. More precisely for a given " there
exist � := 1- exp((n- 1)"2),  being a constant where

|⌧
m

(A⌃
X

A>)- ⌧
n

(⌃
X

)⌧
m

(AA>)| =

|⌧
m

(AU⌃U>A>)- ⌧
n

(⌃)⌧
m

(AA>)| 6 2"k⌃kkAA>k

holds with probability �.

In the above theorem (and the rest of the document) k.k is the operator
norm. The following lemma is a consequence of the previous theorem:

Corollary �. Suppose⌃ is a given covariancematrix and supposeA 2M
n⇥m(R)

is also a given matrix. Then if one generatesA
U

= AU by uniformly choosing
an orthogonal matrix U from O(n) then A

U

together with ⌃, satis�es trace
condition in probability when n tends to in�nity More precisely for a given "
there exist � := 1- exp((n- 1)"2),  being a constant where

|⌧
m

(A
U

⌃A>
U

)- ⌧
n

(⌃
X

)⌧
m

(AA>)| =

|⌧
m

(AU⌃U>A>)- ⌧
n

(⌃)⌧
m

(AA>)| 6 2"k⌃kkAA>k

holds with probability �.

There is an important observation tomake at this point; The fact that such
a corollary holds was expected since independence is a mutual relationship;
Selecting cause independently from mechanism would yield the same result
as if one selects mechanism independently from the cause.

�.�.� IGCI and Trace Condition

[��] proposes an argument that connects the trace condition to IGCI postu-
late when the underlying random variables have Gaussian distributions:

Theorem �. [��] Suppose X ⇠ N(0,⌃
X

) is an N dimensional random vari-
able and Y = AX where A 2 M

N⇥N(R). Moreover suppose E
X

and E
Y

are
manifold of isotropic Gaussian densities. Then the following relationship holds:

D(P
Y

||E
Y

) = D(P
X

||E
X

) +D(
!
P
Y

||E
Y

) +
N

2

⇥
1-

⌧(⌃
X

)⌧(AA>)

⌧(⌃
y

N

)

⇤
.

In other words this theorem states that orthogonality assumption is full-
�led for X! Y when the functional relationship between variables is linear,
if and only if the trace condition is satis�ed.

�.� ������ ��������� ��� ���� ������

The problem of causal inference in time series has been �rst formally studied
by N. Wiener [��] and adapted in a practical form by C. Granger [��]. The
causal inference postulate of Wiener-Granger causality states that a time se-
ries X(t) causes a time series Y(t) if the past of X

t

and Y
t

results in a better
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prediction of the future of Y
t

than a prediction based on the past of Y
t

only.
The mathematical formulation proposed by Granger was based on a linear
model of vector autoregression [��]. Later generalization to other models
have been proposed, including a non-parametric technique based on infor-
mation theory, Transfer Entropy, introduced by T. Schreiber [��].

Although Wiener-Granger causality is by far the most popular approach
for time series, other methods for inferring causal relations have been sug-
gested by physicists to infer driver-response relationships in coupled dynam-
ical systems. These techniques rely on the notion of dynamical interdepen-
dence [�, ��, ��, ��]. Measures of interdependence have been criticized for
being a�ected by the di�erence in complexity of the trajectories of the un-
derlying systems, possibly generating erroneous causal inferences [�, ��].
On the other hand neither methods based on Wiener-Granger causality nor
dynamical interdependences can infer causal relations in complete absence
of noise or chaotic behaviour.

Finally, in machine learning community, there has been other attempts to
establish frameworks of causal inference for time series based on the gener-
alization of available causal inference methods for static random variables
in which time can be neglected. Two of these works are based on extensions
of additive noise models for causal inference [��, ��]. Granger causality is
unable to address nonlinear instantaneous causal relations and both of the
aforementioned methods are unable to account for hidden variables. Moti-
vated to address these shortcomings [��] proposes another causal inference
method for time series which is based on restricted functional causal models
called TiMiNo.

�.� ������ ��������� ������� �� ������ ����

Unlike computers that rely highly on sequential processing, brain informa-
tion processing is highly distributed among a large number of modules [��].
Since the anatomical connectivity between cortical modules is widespread
and largely bidirectional, the detailed organization of information process-
ing needs to be inferred from brain activity itself. In particular, �nding mea-
sures to quantify the directed in�uence between several brain regions from
signals recorded in each of them, called e�ective connectivity measures, has
raised considerable interest in the last decade [��]. E�ective connectivity
measures essentially aim at inferring the directionality and strength of the
interactions between di�erent brain regions during a particular task or brain
state. The purpose of these approaches is to help understand the underlying
dynamical mechanisms of information processing [��] as well as improving
the diagnosis and treatment of brain disease such as epilepsy [�, ��, ��, ��].

E�ective connectivity studies based on functional Magnetic Resonance
Imaging data can mainly be divided into two categories [��]; the ones re-
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lying on Dynamic Causal Modelling (DCM) [��] and the others relying on
Granger causality [��]. However, recent works also started to consider meth-
ods based on the causalMarkov condition [��]. E�ective connectivity studies
based on electrical activity measurements, like Electroencephalography and
Magnetoencephalography or local �eld potentials (LFPs), are either based
on Granger causality [��] (and its generalizations such as transfer entropy
[��], partial directed coherence [��, ��]) or rely on dynamical interdepen-
dence measures [��, ��, ��]. Although DCM has been used extensively in
neuroimaging research, recently its e�ectiveness has been challenged [��].
Granger causality based methods, as previously mentioned, are unable to
�nd the causal direction in absence of noise or chaotic behaviour. Moreover,
Granger causality relies on a postulate involving predictability of the time
series as stated by Wiener [��], while other postulates might be exploited
advantageously.





4
I CM FOR L INEAR SY STEMS

In this chapter we introduce a causal inference framework for the study of
causal inference for time series that are inputs and outputs of linear time
invariant systems. We show that this framework is an extension of already
established trace method in the limit. Then in the following chapter we de-
rive some identi�ability results special for this framework and �nally we
test our framework on synthesized and real world data. We start by explain-
ing the idea through two examples. We then derive our formal expressions
through these example and then compare them to the asymptotic behaviour
of trace expressions introduced in [��].

�.� ������������� ��������

We �rst illustrate an intuitive justi�cation of the framework through two
simple examples. The �rst example is the case where the input of LTI is a
circular process. The second example is the case where the input signal to
the system is a white noise.

�.�.� Example: LTI with White Noise as Input

For a given LTI with impulse response function h
t

suppose {X
t

} the input
of the system is a white noise with �2 as its constant power spectrum. Based
on proposition � we get

8⌫ -
1

2
6 ⌫ 6 1

2
, S

yy

(⌫) = S
xx

(⌫)| ˆh(⌫)|2 = �2| ˆh(⌫)|2. (��)

As one can see, transfer function modulates the power spectral density of
the stochastic process by changing the contribution of each frequency to
the total variance of input and by doing so generates the SDF of output sig-
nal or S

yy

. Now suppose ˆh
⌫

is non-vanishing and therefore h(-1) exist.
Since the output of this �lter has a constant power in any frequency, h(-1)

should have been “designed” in away thatmodulates the power values larger
than �2 and attenuates them to become �2 and it increases the power val-
ues with frequencies less than �2 to become �2. Therefore the backward
�lter is highly informative about the input signal {Y

t

} and this is suspicious
relationship if we are ought to assume that the postulate of independence be-
tween cause and mechanism holds. An illustration of this situation has been
depicted in �g. �. This motivates us to de�ne a measure of independence
between power spectra of the input and output on one hand and the energy
spectra of impulse response function on the other hand. We represent de-
pendence of input and mechanism in terms of covariance between transfer

��
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S

S
h(t)

Figure �: A schematic of a �lter that takes as input a time series close to white noise
(blue signal on the left). Therefore the spectral density of input {X

t

} is
highly uncorrelated to ˆh

⌫

. The output {Y
t

} as can be seen (on the right) has
a spectral density very similar to the transfer function of {h

t

} (depicted in
green). On the hand in the backward direction the transfer function have
peaks at frequencies that the power spectrum of input ({Y

t

}) has valleys.
This makes the this transfer function and the spectral density S

yy

to have
a highly negative correlation.

function and input power spectrum. More precisely, for S
xx

and ˆh de�ned
on [-1

2

,

1

2

) and the uniform measure over [-1

2

,

1

2

) as reference measure we
get:

Cov(S
xx

, | ˆh|2) = Cov(S
xx

,

S
yy

S
xx

) = (��)
Z 1

2

- 1

2

S
yy

(⌫)d⌫-

Z 1

2

- 1

2

S
xx

(⌫)d⌫

Z 1

2

- 1

2

| ˆh(⌫)|2d⌫

Now based on eq. (��) we get

Cov(S
xx

, | ˆh|2) = (�2
Z 1

2

- 1

2

| ˆh(⌫)|2d⌫- �2
Z 1

2

- 1

2

| ˆh(⌫ 0)|2d⌫ 0) = 0

�.�.� Example: Time Series With Finite Length

Consider a linear time invariant (LTI) system with impulse response func-
tion h

t

with input and output {X
t

} and {Y
t

}. More precisely for a given dis-
crete zero mean wide sense stationary circular process the output of this
�lter is calculated by

{X
t

}N-1

t=0

⇤
c

{h
t

}N-1

t=0

= {Y
t

}N-1

t=0

.
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In such a case applying the unitary DFT introduced will give us

ˆY
⌫

=
p
N ˆX

⌫

· ˆh
⌫

where { ˆX
⌫

} and { ˆY
⌫

} are random processes in frequency domain. To derive
a corollary based on [? ] we separate the real and imaginary part of ˆ

X and
ˆ

Y. Then we get the following relation in real domain:

ˆY
R

: ˆY
I

=
p
NH · ( ˆX

R

: ˆX
I

) (��)

Where ˆX
R

and ˆX
I

are real and imaginary parts of X and ˆY
R

and ˆY
I

are real
and imaginary parts of Y and

H =

2

66666666664

Re( ˆh
0

) 0 -Im( ˆh
0

) 0
. . . . . .

0 Re( ˆh
N-1

) 0 -Im( ˆh
N-1

)

Im( ˆh
0

) 0 Re( ˆh
0

) 0
. . . . . .

0 Im( ˆh
N-1

) 0 Re( ˆh
N-1

)

3

77777777775

and therefore a special case of ICM for linear deterministic highdimensional
data introduced in section �.�.� will be retrieved. Matrix H is fairly simple
and an straightforward calculation shows:

⌧(HH>) =  ({ ˆ

h

⌫

}) =  ({h
t

}), (��)

based on Plancherel theorem and de�nition of energy. Since DFT is a uni-
tary transformation we have tr(⌃

X

) = tr(⌃
ˆ

X

) and tr(⌃
Y

) = tr(⌃
ˆ

Y

). Also
from linearity of this transformation it follows that ˆX and ˆY are zero mean
processes. Moreover the following relationship holds for ˆ

X as a process:

⌧(⌃
ˆ

X

) =
1

N

N-1X

f=0

Cov( ˆX
f

,

ˆX⇤
f

) =
1

N

N-1X

f=0

E( ˆX
f

ˆX⇤
f

). (��)

On the other hand, as explained above,

tr(⌃
X

) = tr(⌃
ˆ

X

)) 1

N

N-1X

f=0

E
P

( ˆX
f

ˆX⇤
f

) =
1

N

N-1X

t=0

E
P

(X
t

X⇤
t

) = (��)

C
X

(0) =
1

N

N-1X

f=0

S
xx

[f] = P({X
t

}) (��)

Same calculations can be carried out for ⌃
ˆ

Y

. This yields:

�
X!Y

= �
ˆ

X! ˆ

Y

= log ⌧(H⌃
ˆ

X

H>)- log ⌧(⌃
ˆ

X

)- log ⌧(HH>) =

log(P({Y
t

}))- log(P({X
t

}))- log( ({ ˆh
⌫

}))



�� ��� ��� ������ �������

The �rst equation in expression above follows again from the fact that DFT is
a unitary transformation. And the last equation is based on eqs. (��) and (��).
One needs to notice that this expression is nothing but the covariance expres-
sion in eq. (��) for discrete case.

As been discussed before there is a connection between two di�erent
methods of ICM and their relation has been emphasized through orthogonal-
ity of relative entropies [��]. For the sake of demonstration we also sketch
the relation in this case to the information geometric representation of or-
thogonality, since later we will extend this result to the case of in�nite time
series and spectral densities. So far, for information geometric approach de-
�ne 2N-dimensional isotropic Gaussian densities as reference measures for
X := ˆX

R

: ˆX
I

and Y := ˆY
R

: ˆY
I

with equal means accordingly. By theorem �
we get

D(P
Y

||E
Y

) = D(P
X

||E
X

) +D(
!
P
Y

||U
Y

) +N
⇥
1-

⌧(⌃
X

)⌧(HH>)

⌧(⌃
Y

)

⇤
(��)

Again based on eqs. (��) and (��) we get:

D(P
Y

||E
Y

) = D(P
X

||E
X

) +D(
!
P
Y

||U
Y

) +N
⇥
1-

P(X
t
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t

})

P(Y
t

)

⇤

D(P
Y

||E
Y

) = D(P
X

||E
X

) +D(
!
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||U
Y

) +N
⇥
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P
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(⌫)
P

N-1

⌫=0

S

yy

(⌫)
S

xx

(⌫)
P

N-1

⌫=0

S
yy

(⌫)

⇤

Based on these observations we de�ne our framework of causal inference
for discrete LTI systems, i.e. LTI systems with discrete input and output.

�.� �������� ������������ �������� (���)

The two examples in the previous sectionmotivates the de�nition of a causal
inference criteria based on spectral covariances. They also hint to a possi-
ble connection between the trace condition of [��] and the spectral relation
since white noise example explained here is reminiscent of the example of
linear relationship with an isotropic Gaussian distribution with identity co-
variance matrix as input presented as an example in [��]. We de�ne our
causal inference postulate as follows:

Postulate �. ( Spectral Independence Criteria) In a linear time invariant
systemwith impulse response functionh

t

and weakly stationary input and out-
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put {X
t

} and {Y
t

} we say {X
t

} is the cause and {Y
t

} is the e�ect if the following
equality approximately holds:

Z 1

2

- 1

2

S
yy

(⌫)d⌫ =

Z 1

2

- 1

2

S
xx

(⌫)d⌫

Z 1

2

- 1

2

S
yy

(⌫)

S
xx

(⌫)
d⌫

To asses to what degree such a relation holds we introduce scale invariant
expression �1

X

t

!Y

t

and for the backward direction �1
Y

t

!X

t

as follows:

�1
X

t

!Y

t

:= log

Z 1

2

- 1

2

S
yy

(⌫)d⌫- log

Z 1

2
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2

S
xx

(⌫)d⌫
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(⌫)

S
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(⌫)
d⌫ (��)

�1
Y

t
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:= log
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2
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2

S
xx

(⌫)d⌫- log
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S
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(⌫)d⌫
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2
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2

S
xx

(⌫)

S
yy

(⌫)
d⌫ (��)

Or written in terms of total power and energy:

�1
X

t

!Y

t

= log(P({Y
t

}))- log(P({X
t

})- log( ({h
t

}))

�1
Y

t

!X

t

= log(P({X
t

}))- log(P({Y
t

})- log( ({h(-1)
t

}))

By scale invariance in the above expression what we mean is that if the
input signal is multiplied by a nonzero value (whether in time or frequency
domain) the value of the expression will not change.

Remark �. For the case of circular processes, every summand in eqs. (��)
and (��) should be stated in terms of discrete Fourier transform; this means
that integrals should be replaced by sums over frequency domain.

�.�.� Relation between SIC and Trace Condition

In this section we consider the asymptotic behaviour of trace condition [��]
used to analyse the linear relationship arose between a truncated version
of the input and output time series of an LTI and show that in the limit of
sample size the trace expressions eqs. (��) and (��) approach to spectral ex-
pressions in eqs. (��) and (��).

As before suppose {X
t

} and a linear �lter S are given. Then by proposi-
tion � there exists a impulse response function h

t

where

8⌧ 2 Z, Y
⌧

= ({X
t

} ⇤ {h
t

})(⌧). (��)

Lets take only a �nite length of this convolution into account and write the
following equation as an approximation for eq. (��):

Y 0
t

=
2N-1X

k=0

X
t-k

h
k

(��)
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But this on the other hand, when written for the 2N elements of {Y 0
t

} around
index 0 gives the following matrix relationship:
2

66666664

Y 0-N

Y 0-N+1

...
Y 0
N-2

Y 0
N-1

3

77777775

=

2

66666664

h
0

h-1

· · · h-2N+1

h
1

h
0

· · · h-2N+2

...
h
2N-2

h
2N-3

· · · h-1

h
2N-1

h
2N-2

· · · h
0

3

77777775

2

66666664

X-N

X-N+1

...
X
N-2

X
N-1

3

77777775

.

(��)

If we name the vector on the left as y

N

, the matrix as HN and the right
vector as x

N

then the trace expression yields:

�2N

X!Y

= log(⌃
y

N

)- log(⌃
x

N

)- log(HNHN

T

) (��)

De�ne T
N

:= ⌧(HNHN

>
). Now we show that T

N

converges to  ({h
t

}) =
1P

k=-1
|h

k

|2, when the latter exists.

Lemma �. Suppose h
t

is absolutely convergent in the square norm. Then T
N

converges to  ({h
t

}).

Proof. First lets simplify the expression for T
N

:

T
N

:= ⌧(HNHN

>
) =

1

2N

X

i,j

[HN]2
ij

=
2N-1X

k=-2N+1
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k

|2
2N- |k|

2N

=
-1X
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k

|2
2N- |k|

2N
+

2N-1X

k=0

|h
k

|2
2N- |k|

2N
. (��)

Its easy to see that T
N

is an increasing sequence ofN. Moreover it is bounded

by
1P
-1

|h
k

|2 < 1. Therefore this series converges. In order to show that it

converges to  ({h
t

}), we �rst notice that for a given ", there existm
0

2N

such that

8m > m
0

|

mX

k=-m

|h
k

|2 - ({h
t

})| < ". (��)

Now take N
m

0

>
m

0

2

m

0

+1|h
m

0

|2

"

. We have

N
m
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>
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0

2m0

+1|h
m

0

|2

"
) |h

m

0

|2m
0
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<
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.

Same can be done for any 0 6 k 6 m
0

, i.e. there exist N
k

such that:
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k

|2k

2N
k

<
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2k+2
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Now take N
max

= max{N
0

,N
1

, ...,N
m

0

}+ 1. Then obviously we get:

||h
k

|2 -
|h

k

|2(2N
max

- k)

2N
max

| <
"

2k+2

And therefore:
m

0X

k=0

||h
k

|2 -
|h

k

|2(2N
max

- k)

2N
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| <

m

0X

k=0

"

2k+2

<
"

2
(��)

Similar results hold for the �rst sum term in eq. (��) and by taking the
maximum of two N

max

’s (say N 0
max

) and considering the fact that T
N

is
increasing and by the application of triangular inequality for eq. (��), we
can easily infer that

8N > N 0
max

|T
N

- ({h
t

})| < ".

Remark �. [��, pp. ���] When
1P

k=-1
|h

k

|2 < 1, the LTI L is stable in the

sense that there exist A > 0 such that kL({x
t

})k1 6 Akxk1 for any {x
t

} 2
l1(R).

We also need to prove that Y 0
k

’s in eq. (��) are asymptotically converging to
Y
k

’s in the following sense:

Lemma �. Suppose an LTI �lter Swith zero mean weakly stationary processes
as input ({X

t

}) and output ({Y
t

}) has been given. Then eq. (��) holds and there-
fore we can get a truncated linear relationship as eq. (��). If {h

t

} would be ab-
solutely convergent then we get the following relationship between covariance
matrices of Y-N:N-1

and Y 0-N:N-1

:

lim

N!1
|⌧(⌃

Y-N:N-1

)- ⌧(⌃
Y

0
-N:N-1

)| = 0,
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Proof. For simplicity of calculations we name 2N dimensional random vec-
tors Y 0-N:N-1

and Y-N:N-1

as Y 0 and Y and their covariance matrices with
⌃
Y

0 and ⌃
Y

respectively. Then we have:

|⌧(⌃
Y-N:N-1

)- ⌧(⌃
Y

0
-N:N-1

)| = |⌧(E
P

(YY>))- ⌧(E
P

(Y 0Y 0
>
))|
⇤
=

1

2N
|E

P

(Y>Y)- E
P

(Y 0>Y 0)| =
1

2N
|E

P

�
(Y - Y 0)>(Y + Y 0)

�
| 6

1

2N
E

P

|(Y - Y 0)>(Y + Y 0)| 6
1

2N
E

P

⇣q
(Y - Y 0)>(Y - Y 0)

q
(Y + Y 0)>(Y + Y 0)

⌘
6

1

2N

q
E

P

((Y - Y 0)>(Y - Y 0))
q

E
P

((Y + Y 0)>(Y + Y 0)) =
r

1

2N
E

P

((Y - Y 0)>(Y - Y 0))

r
1

2N
E

P

((Y + Y 0)>(Y + Y 0))
⇤⇤
=

p
⌧(⌃

Y-Y

0)
p
⌧(⌃

Y+Y

0)

where (*) and (**) follows from the fact that one can take trace (or nor-
malized trace) into expectation and vice versa, and moreover from the fact
that tr(AB) = tr(BA) for any two matrices that their multiplication is
well de�ned. The inequalities are the result of the application of Cauchy-
Schwartz inequality for covariances of random variables. First we show thatp
⌧(⌃

Y+Y

0) is bounded as a function of N. De�ne {h(j)
t

} as follows

h
(j)
t

=

8
<

:
2h

t

if -N 6 t+ j 6 N- 1

h
t

otherwise
.

We can bound each element of diagonal of ⌃
Y+Y

0 as follows

[⌃
Y+Y

0 ]
jj

= E
P

h
(Y

j

+ Y 0
j

)2
i
= E

P

h
(

1X

l=-1
X
j-l

h
(j)
l

)2
i
6

E
P

h
(

1X

l=-1
|X

j-l

||h
(j)
l

|)2
i
6 4E

P

h
(

1X

l=-1
|X

j-l

||h
l

|)2
i
= 4C

Y

(0),

and therefore ⌧(⌃
Y+Y

0) is bounded.

Now we show that each element of diagonal of ⌃
Y-Y

0 tends to zero when
N tends to in�nity which will complete the proof. With overload of notation,
in this case de�ne {h(j)

t

} as follows

h
(j)
t

=

8
<

:
0 if -N 6 t+ j 6 N- 1

h
t

otherwise.
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Then for the j-th element of ⌃
Y-Y

0 we have

[⌃
Y-Y

0 ]
jj

= E
P

h
(Y

j

- Y 0
j

)2
i
= E

P

h
(

1X

l=-1
X
j-l

h
(j)
l

)2
i
= E

P

h
(

X

l>N-j

l<-N-j

X
j-l

h
l

)2
i

Since autocorrelation function attains its maximum at t = 0 and

8i, j 2 Z, E
P

(X
i

X
j

) 6
q

E
P

(X2

i

)E
P

(X2

j

)

we get:

8i, j 2 Z, E
P

(X
i

X
j

) 6 E
P

(X2

0

)

[⌃
Y-Y

0 ]
jj

= E
P

h
(

X

l>N-j

l<-N-j

X
j-l

h
l

)2
i
6

X

l,l

0>N-j

l,l

0
<-N-j

E
P

(X2

0

)h
l

h
l

0 =

E
P

(X2

0

)
X

l,l

0>N-j

l,l

0
<-N-j

h
l

h
l

0 6 E
P

(X2

0

)(
X

l>N-j

l<-N-j

h
l

)2 6 E
P

(X2

0

)(
X

l>N-j

l<-N-j

|h
l

|)2

Now since {h
t

} is absolutely convergent, it follows that [⌃
Y-Y

0 ]
jj

can be ar-
bitrarily reduced by increasingN. Then it follows that ⌧(⌃

Y-Y

0) approaches
to zero when N tends to in�nity.

Finally to prove the theorem regarding the asymptotic behaviour of of
trace method and its equivalence to SIC, we need one of the convergence
theorems due to Szegö:

Theorem �. (Szegö’s convergence theorem)[��] Let f : [-1

2

,

1

2

) ! R

f 2 L1 be a bounded function and suppose t
k

is its Fourier series coe�cients,
i.e.

t
k

=

Z 1

2

- 1

2

f(⌫)eik⌫d⌫, t 2 Z.

Consider Toeplitz matrices T
n

de�ned as

[T
n

]
ij

= t
i-j

i, j 2 {0, ...,n- 1}

with eigenvalues ⌧
n,k

(0 6 k 6 n- 1). Then if T
n

’s are Hermitian, i.e. t
i

= ¯t
i

for any i, then for any continuous function F we have:

lim

n!1

1

n

n-1X

k=0

F(⌧
n,k

) =

Z 1

2

- 1

2

F(f(⌫))d⌫

We are ready to state our convergence theorem:

Theorem �. For a given windowed discrete time series, elements of trace con-
dition, i.e.�n

X!Y

and�n

Y!X

, asymptotically (increasing the size of window as
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de�ned in eq. (��)) approach to the spectral values of time series on in�nite do-
main. As a result the spectral density based estimator coincides with the trace
based estimator in the limit, and more precisely

lim

N!1
⌧(⌃

x

N

) =

1

2Z

- 1

2

S
xx

(⌫)d⌫, lim

N!1
⌧(⌃

y

N

) =

1

2Z

- 1

2

S
yy

(⌫)d⌫,

and lim

N!1
T
N

=

1

2Z

- 1

2

| ˆh(⌫)|2d⌫,

where T
N

is de�ned as in eq. (��). And eventually:

lim

n!1
�n

X!Y

= �1
X!Y

lim

n!1
�n

Y!X

= �1
Y!X

Proof. Both ⌃
x

N

and ⌃
y

N

are hermitian Toeplitz matrices and based on the-
orem � where F has been chosen as identity function and also applying
lemma � we get:

lim

N!1
⌧(⌃

x

N

) =

1

2Z

- 1

2

S
xx

(⌫)d⌫ (��)

lim

N!1
⌧(⌃

y

N

) =

1

2Z

- 1

2

S
yy

(⌫)d⌫ (��)

Moreover by Plancherel’s theorem and lemma � it follows that:

lim

N!1
T
N

=  ({h
t

}) =

1

2Z

- 1

2

| ˆh(⌫)|2d⌫ (��)

This theorem shows that trace expressions calculated for windowed ver-
sion of time series are nothing but estimates of spectral expression and there-
fore justi�es that these two di�erent methods for causal inference are indeed
consistent with each other. In the next chapter we establish a di�erent con-
nection (based on information theory) to the another ICM-based causal in-
ference methods for nonlinear relationships [��] when the time series are
discrete weakly stationary Gaussian processes.
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S I C AND IGC I FOR GAUS S IAN PROCES SE S

In section �.�.� we have described that [��] established a connection be-
tween the causal inference method for linear high dimensional data and
IGCI method for nonlinear functions. Later we applied this derivation on
circular processes to illustrate an equivalent information geometric relation
in therms of spectral densities for weakly stationary Gaussian circular pro-
cesses. In this section we extend this result to the case of discrete weakly
stationary and purely non-deterministic Gaussian processes. First we start
by �nding the isotropic Gaussian process (Gaussian white noise) which min-
imized the relative entropy rate of a given Gaussian process with respect to
it. Name the set of all isotropic Gaussians de�ned on the same probability
space of {X

t

} as E
X

t

where we parametrise the elements of this family with
U�

t

and � represents the constant power spectral density of the white noise.
Then we have the following

Lemma �. Suppose {X
t

} is a zero mean purely nondeterministic weakly sta-
tionary Gaussian processes with SDF’s S

xx

and take E
X

t

to be the set of discrete
isotropic weakly stationary Gaussian processes de�ned on the same probability
space. Then:

¯D(P
X

t

kE
X

t

) = -
1

2

Z 1

2

- 1

2

ln

✓
S
xx

(⌫)

P(X
t

)

◆
d⌫ (��)

Proof. In order to �nd the isotropic Gaussian process with the minimum
distance, we take the derivative of ¯D(P

X

t

kP
U

�

t

) and look for its singular
value. We do this calculation by means of lemma � (One needs to notice that
we can use this lemma because the condition (ii) is satis�ed):

d ¯D(P
X

t

kP
U

�

t

)

d�
=

1

2

Z 1

2

- 1

2

✓
-
f(⌫)

�2
+

f(⌫)

�2
�

f(⌫)

◆
d⌫ = 0)

Z 1

2

- 1

2

f(⌫)

�2
=

1

�
) � = P(X

t

)

And we get:

¯D(P
X

t

kE
X

t

) =
1

2

Z 1

2

- 1

2

f(⌫)

P(X
t

)
- 1- ln

✓
f(⌫)

P(X
t

)

◆
d⌫.

��
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Using the de�nition of P we get:

1

2

Z 1

2

- 1

2

f(⌫)

P(X
t

)
- 1- ln

✓
f(⌫)

P(X
t

)

◆
d⌫ =

1

2

R 1

2

- 1

2

f(⌫)

P(X
t

)
-

1

2

Z 1

2

- 1

2

1-
1

2

Z 1

2

- 1

2

ln

✓
f(⌫)

P(X
t

)

◆
d⌫ = -

1

2

Z 1

2

- 1

2

ln

✓
f(⌫)

P(X
t

)

◆
d⌫

And this proves the argument.

Now based on this observation we calculate all the terms that are calculated
in section �.� of [��]. Here E

X

t

and E
Y

t

represent the set of Gaussian white
noise processes de�ned on the same probability space as {X

t

} and {Y
t

} re-
spectively.

Theorem ��. Suppose weakly stationary Gaussian process {X
t

} and {Y
t

} are
the input and output for an LTI system S respectively and h

t

is the impulse
response function of S. If ˆh

⌫

satis�es any of the conditions of lemma � when
replaced with S

yy

, then

¯D(P
Y

t

||E
Y

t

) = ¯D(P
X

t

||E
X

t

) + ¯D(
!
P
Y

t

||U
Y

t

) +
1

2

0

B@1-

R 1

2

- 1

2

S
xx

R 1

2

- 1

2

S

yy

S

xx

R 1

2

- 1

2

S
yy

1

CA

Proof. Using lemma � we have

¯D(P
X

t

||E
X

t

) = -
1

2

Z 1

2

- 1

2

ln

✓
S
xx

(⌫)

P(X
t

)

◆
d⌫

¯D(P
Y

t

||E
Y

t

) = -
1

2

Z 1

2

- 1

2

ln

✓
S
yy

(⌫)

P(Y
t

)

◆
d⌫

Transforming {U
X

t

} and {h
t

} to Fourier domain its easy to see that {
�!
Y
t

}

is a zero mean weakly stationary Gaussian process with SDF P(X
t

)| ˆh(⌫)|2

according to proposition �. Therefore using lemma � we get

¯D(
!
P
Y

t

||U
Y

t

) =
1

2

Z 1

2

- 1

2

 
P(X

t

)| ˆh(⌫)|2

P(Y
t

)
- 1- log

P(X
t

)| ˆh(⌫)|2

P(Y
t

)

!

d⌫

which completes the proof.

This theorem now shows that the orthogonality in information space in-
troduced as a criteria for causal inference in [��, ��] in the case of discrete
weakly stationary zero mean Gaussian processes where the function is an
LTI �lter is equivalent to the independence condition introduced for spectral
independence criterion.

Remark �. Similar to the information geometric approach in [��, ��], its pos-
sible to interpret these results in terms of information geometry if one takes
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E
X

t

and E
Y

t

as manifold of isotropic Gaussian processes. One needs to know
that this type of in�nite dimensional exponential manifolds are well de�ned
and they inherit the information geometric properties of the manifolds of mul-
tidimensional exponential distributions [��].

Now that we showed the close relations between SIC and other methods
based on ICM we derive some identi�ability results for SIC method in the
next chapter.





6
I D EN T I F IAB I L I T Y RE SULT S

It has been argued in [��] that �n

X!Y

is not necessarily positive or nega-
tive in correct causal direction. Rather the causal inference framework es-
tablished for numerical tests is based on the fact that �n

X!Y

expression has
smaller absolute value in correct direction comparing to the backward direc-
tion. This argument is easy to illustrate for �1

X!Y

as well; just consider LTI
�lter with white noise as input where in one case the transfer function is
constant but greater than one and in the other case its constant and smaller
than one. Our claim still is that the spectral expression �1

X!Y

is closer to
zero in absolute value when X ! Y. The following section is composed of
concentration of measure arguments justifying this point.

�.� ������������� �� ������� (���)

Here we state and prove two di�erent concentration of measure theorems to
indicate that the delta expressions eqs. (��) and (��) yield smaller values (in
absolute sense) in the correct causal direction when some conditions hold
for the data generating model. We �rst assert a concentration of measure
theorem for FIR �lters. Before stating the theoremwe state a consequence of
a limit theorem due to Szegö which will be used in the proof of the theorem:

Lemma �. [��, corr. �.�] As before (c.f. to theorem �) suppose T
n

are sequences
of Toeplitz matrices and with eigenvalues ⌧

n,i

associated with SPD g and
Fourier coe�cients of g, t

i

are absolutely summable. Then

lim

n!1
max

i

⌧
n,i

= max

x2[- 1

2

,

1

2

)
g(x)

The next theorem shows that for any given weakly stationary input when
the forward coe�cients of an FIR �lter are chosen based on a rotation in-
variant prior the spectral independence criterion will be satis�ed with high
probability when the order of the �lter increases.

Theorem ��. (CoM for FIR �lters) Suppose b
i

’s (0 6 i 6 m - 1) are
given real numbers. De�ne S to be the FIR �lter with coe�cients b

i

and im-
pulse response function h. Now supposeU 2 O(m) has been chosen uniformly.
Suppose SU is another FIR with coe�cients U>b and impulse response func-
tion hU. Then for a weakly stationary input {X

t

} where C
X

(⌧) is absolutely
summable and for a given ✏,

|
R
SU
yy

(⌫)d⌫- (b)P(X
t

)|

 (b)max

⌫

S
xx

(⌫)
=

|
R
S
xx

(⌫)|chU(⌫)|2d⌫- (b)P(X
t

)|

 (b)max

⌫

S
xx

(⌫)
6 2✏

��
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with probability � := 1- exp((m- 1)"2) where again  is a constant.

Proof. Without loss of generality and for the sake of simplicity we only con-
sider the positive indices of the time series and we take the �lter to be causal;
other cases can be treated in the similar way. Then the following relation
holds between input and output of the �lter:

8i, 0 6 i 6 N- 1 Y
i

=
m-1X

j=0

b
j

X
i-j

Formulated in terms of matrices the above relation can be represented as
2

66666664

Y
0

Y
1

...
Y
N-2

Y
N-1

3

77777775

=

2

66666664

b
m-1

b
m-2

· · · b
0

0 · · · 0 0

0 b
m-1

· · · b
1

b
0

· · · 0 0
. . .

0 0 · · · b
m-1

· · · b
1

b
0

0

0 0 · · · 0 b
m-1

· · · b
1

b
0

3

77777775

2

66666664

X-m+1

X-m+2

...
X
N-2

X
N-1

3

77777775

,

where we call the above N⇥ (N +m - 1) matrix as B. We de�ne ⌃i

X

2
M

m⇥m(R) to be the covariance matrices as follows:

8i 0 6 i 6 N- 1 0 6 j, k 6 m- 1 [⌃i

X

]
jk

= Cov(X
i+j

,X
i+k

)

If we take ⌃
X

0:N-1

,⌃
Y

0:N-1

2M
N⇥N(R) to be the covariance matrices for

X
0:N-1

and Y
0:N-1

respectively, then we have

⌃
Y

0:N-1

= B⌃
X-m+1:N-1

B>

Also de�ne ⌃U

Y

0:N-1

to be the covariance matrix of the output for FIR S 0 with
b 0 = U>b. also assume the spectrum of the output for this �lter is SU

yy

.
One can write diagonal elements of ⌃

Y

0:N-1

and ⌃U

Y

0:N-1

based on the above
equation as follows:

[⌃
Y

0:N-1

]
ii

= b>⌃i

X

b, [⌃U

Y

0:N-1

]
ii

= b>U⌃i

X

U>b

and therefore the normalized trace of ⌃
Y

0:N-1

can be written as

⌧
N

(⌃
Y

0:N-1

) =
1

N
b>

N-1X

i=0

⌃i

X

b, ⌧
N

(⌃U

Y

0:N-1

) =
1

N
b>U

N-1X

i=-m+1

⌃i

X

U>b

De�ne ⌃ := 1

N

P
N-1

i=-m+1

⌃i

X

. Taking A = b> in corollary � in chapter �
for a randomly selected U we get:

|
1

N
b>U⌃U>b- 1

N
⌧
m

(⌃)hb, bi| 6 2"k⌃khb, bi
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And therefore

|⌧
N

(⌃U

Y

0:N-1

)-
1

N
⌧
m

(⌃)hb, bi| 6 2"k⌃khb, bi

On the other hand the elements of diagonals of ⌃i

X

’s are C
X

(0). Therefore:

1

N
⌧
m

(⌃) =
m(N)C

X

(0)

mN
= P({X

t

})

Since ⌃i

X

’s are principal submatrices of ⌃
X

0:N-1

therefore by corollary � in
chapter � we get

⇢(⌃) = k⌃k = k 1
N

N-1X

i=0

⌃i

X

k 6 1

N

N-1X

i=0

k⌃i

X

k 6 ⇢(⌃
X

0:N-1

).

Now since C
X

(⌧)’s are absolutely summable we apply lemma � and we get

⇢(⌃
X

0:N-1

) 6 max

⌫

S
xx

(⌫)

And this together with theorem � completes the proof.

Remark ��. In the preceding lemma for weakly stationary input, ⌃i

X

’s and
⌃i

Y

’s will be independent of i (they will be all equal). We believe the assumption
of weakly stationarity of input is strong and one can derive a similar result for
cyclostationary processes [��], but we leave such an extension to future work.

The second theorem is only con�ned to the case where the time series is
�nite. For this theorem we introduce some new notations. In what follows
we de�ne an action of O(N) over the set of orthogonal matrices in R that
is not compatible to group. ForU 2 O(N) and �nite time series with power
spectrum S

xx

de�ne U • S
xx

:= diag(UD(S
xx

)U>) where D(S
xx

) is a
diagonal matrix with diagonal entries being elements of S

xx

in order. In

other words [U • S
xx

]
ii

=
NP
j=1

|u
ij

|2[S
xx

]
i

. We will also need the following

lemma:

Lemma �. Suppose⌃ 2M
N⇥N(R) andA 2M

N⇥N(R) are given diagonal
matrices. If U has been uniformly selected from O(N) in R,then for a given "
there exist � := 1- exp((2N- 1)"2),  being a constant where

|⌧
N

(A diag(U⌃U>)A>)- ⌧
N

(⌃
X

)⌧
N

(AA>)| =

6 2"k⌃kkAA>k

Proof. Since we have

|⌧
2N

(AU⌃U>A>)- ⌧
2N

(⌃)⌧
2N

(AA>)| =

|⌧
N

(A diag(U⌃U>)A>)- ⌧
N

(⌃
X

)⌧
N

(AA>)|,

applying theorem � proves the lemma.
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Based on this de�nition we can state and prove our concentration of mea-
sure theorem for �nite time series with mixing spectrum (as to be explained
below):

Theorem ��. (CoM for �nite time series) Suppose U has been randomly
selected from the Haar measure over orthogonal group ofM

N⇥N(R) and {X
t

}

is a circular process. Then the following holds
���
X

| ˆh(⌫)|2(U · S
xx

)(⌫)-
X

S
xx

(⌫)
X

| ˆh(⌫)|2
��� =

6 2"max

⌫

(S
xx

(⌫))max

⌫

(| ˆh(⌫)|2)

with probability � := 1- exp((2N- 1)"2) where again  is a constant.

Proof. The proof follows from the de�nition of (•), the fact that operator
norm for diagonal matrices is equal to the largest diagonal value and an
application of lemma �.

The reason that we call these time series as time series with mixing spec-
trum is that for any given S

xx

,U ·S
xx

is another spectrum that each element
of it is a weighed average of the spectrum of S

xx

for any possible weighting.
Although there is no practical justi�cation for existence of processes with
such priors over their spectra we found it worthwhile to mention this estab-
lished result.

Since in this section we showed that under some assumptions the spectral
estimator can arbitrarily get close to zero in the right direction when the
order of the �lter increases we show in the next section that it cannot be
the case that the spectral estimator to get arbitrarily close to zero in both
directions; this will complete our causal inference framework in terms of its
identi�ability strength.

�.� ��������� �� ���

Finally, we are ready to present our violation of spectral formula condition;
If SIC is satis�ed in forward direction (X ! Y), i.e. �1

X!Y

is close to zero
in absolute value then it is violated in the backward direction, i.e. �1

Y!X

cannot be close to zero an absolute value either.

Lemma �. (Violation of SIC) For a given linear �lter, under mild conditions,
the following relationship holds

�1
X!Y

+�1
Y!X

= - log

✓
1- Cov( ˆh2

,

1
ˆh2

)

◆
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Proof. Based on de�nitions eqs. (��) and (��) we have:

�1
X!Y

= log(

Z
S
yy

(⌫)d⌫)- log(

Z
S
yy

(⌫)

S
xx

(⌫)
d⌫)- log(

Z
S
xx

(⌫)d⌫)

�1
Y!X

= log(

Z
S
xx

(⌫)d⌫)- log(

Z
S
xx

(⌫)

S
yy

(⌫)
d⌫)- log(

Z
S
yy

(⌫)d⌫)

Summing up both sides we get:

�1
X!Y

+�1
Y!X

= - log(

Z
| ˆh|2(⌫)d⌫

Z
1

| ˆh(⌫)|2
d⌫) =

- log(1- Cov(| ˆh(⌫)|2,

1

| ˆh(⌫)|2
))

All these theoretical justi�cations ensures us that our inference method
is consistent in a crude sense; that for some simple prior assumptions the
method is capable of preferring one direction to other and moreover if the
method picks one direction as certain based on the smallness of estimators
de�ned so far, this decision will be well de�ned.

�.� ��� ����� �����

In this section we derive a preliminary result regarding the e�ect of additive
white noise over our data generating model. Suppose that the data generat-
ing model is as follows:

Y 0
⌧

= S({X
t

})(⌧) +N
⌧

whereN
⌧

is white noise with amplitude � and assume that {Y
t

} is the output
of the same system in deterministic condition, i.e. when there is no noise.
Then for �1

X!Y

we have

�1
X!Y

0 = log

R
S
y

0
y

0(⌫)d⌫
R

S

y

0
y

0(⌫)

S

xx

(⌫) d⌫
R
S
xx

(⌫)d⌫
=

log

�2 +
R
S
yy

(⌫)d⌫
R

S

yy

(⌫)
S

xx

(⌫)d⌫
R
S
xx

(⌫)d⌫+ �2
R
S
xx

(⌫)d⌫
R

1

S

xx

(⌫)d⌫
. (��)

Now taking the limit when � tends to in�nity one can easily infer that

lim

�!1
�1
X!Y

0 = log

1R
S
xx

(⌫)d⌫
R

1

S

xx

(⌫)d⌫
.

This means that in the presence of very large noise the sign of the delta
expression in forward direction, namely �1

X!Y

0 will be negative except for
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the case where the real input to the system is white noise as well. On the
other hand for the spectral expression in the backward direction we have

�1
Y

0!X

= log

R
S
xx

(⌫)d⌫
R

S

xx

(⌫)
S

y

0
y

0(⌫)
d⌫

R
S
y

0
y

0(⌫)d⌫
=

log

R
S
xx

(⌫)d⌫
R

S

xx

(⌫)
S

yy

(⌫)+�

2

d⌫
�
�2 +

R
S
yy

(⌫)d⌫
� .

Once again in the presence of a noise with a very large amplitude one gets:

lim

�!1
�1
Y

0!X

= log

R
S
xx

(⌫)d⌫R
S
xx

(⌫)d⌫
= 0. (��)

Equations (��) and (��) indicate that for a white noise with a very large
amplitude the spectral expression in forward direction approaches to a neg-
ative value and the expression in backward direction approaches to zero;
we will see in the next chapter that our causal inference method chooses
the causal direction associated with larger spectral expression as the correct
causal direction. Therefore in the presence of large noise regime our infer-
ence method spoils. We leave a more elaborated analysis of LTIs under noise
to later works.



7
ALGOR I THMS AND EXPER IMEN TS

In this section we de�ne our causal inference algorithm and we apply it to a
synthetic data set under deterministic and noisy conditions. We also apply
our algorithm to some real world data sets.

�.� ��������� ���� : ����������� �� ��� ��� �������

Wehave designed an experiment using synthetic data in order to observe the
behaviour of estimators in both directions and to get a better idea of design-
ing the decision rule for our causal inference algorithm, which we explain
below. The data generating process is as follows. We considered two IIR �l-
ters S and S 0, with parameters (a, b) and (a 0, b 0) respectively. In each trial
a and a 0 are sampled from an isotropic Gaussian distribution with identity
covariance matrix, and b and b 0 were sampled from an isotropic multidimen-
sional Gaussian distributionwith 0.1 times the identity covariancematrix. In
both cases using rejection sampling we sampled until the coe�cients were
associate to a stable �lter. Also a sequence of length 10000, {Z

t

} has been
sampled by sampling each Z

t

from a normal distribution. Then we consid-
ered {X

t

} to be S({Z
t

}) and {Y
t

} to be S 0({X
t

}). The spectrum for {X
t

} and
{Y

t

} has been calculated using Welch’s method [��]. We repeated this exper-
iment 1000 times. Figure � shows an example of the distribution of �1

X!Y

and �1
Y!X

where

FO(S) = BO(S) = FO(S 0) = BO(S 0) = 5.

An important observation to make at this point is that the empirical dis-
tribution of estimator in the correct direction is concentrated around zero,
however in the wrong direction the estimator stays negative for most of its
mass (in this example %97.3). Based on these observation and the theoret-
ical arguments we designed algorithm � as our causal inference algorithm.
As one can see, the algorithm selects the causal direction associated with
the larger spectral expression estimator as the correct causal direction. In-
terestingly as the following lemma and corollary show, this coincides with
choosing the causal direction associated with the spectral expression estima-
tor with the smaller absolute value

Lemma ��. Suppose a,b 2 R are given. If a+b < 0 then |a| < |b| i� a > b.

Proof. The proof follows by separately considering the cases where a is pos-
itive and is non-positive.

Corollary �. �1
X!Y

> �1
X!Y

i� |�1
X!Y

| < |�1
X!Y

|

Proof. The proof is a result of lemma � and lemma ��.

��
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Figure �: Histogram for the estimators for �1
X!Y

and �1
Y!X

in ���� trials and the
di�erence, �1

X!Y

-�1
Y!X

from top to bottom. For more details refer to
text

All the con�dence intervals in our algorithm are calculated usingWilson’s
score interval [��]:

1

1+ 1

n

z2
↵/2

"

p̂+
1

2n
z2
↵/2

± z
↵/2

r
1

n
p̂ (1- p̂) +

1

4n2

z2
↵/2

#

where p̂ is the estimated success rate, z
↵/2

is 100(1-↵/2)-th percentile of
the standard normal distribution.

After establishing the inference algorithm, the �rst test was the e�ect of
change in dimensions of the �lter over the performance of the method. In
all the examples we set ↵ = 0.05 (and therefore z

↵/2

= 1.96). Also the
parameters for the following simulations are as stated before unless it is
explicitly stated otherwise.



�.� ���� ����� �������� ��

Algorithm � SIC_Inference
�: procedure SIC_I��������

Require: Two time series {X
t

} and {Y
t

} are given.
�: S

xx

 spectrum of X
t

�: S
yy

 spectrum of Y
t

�: Calculate �1
X!Y

and �1
Y!X

using eqs. (��) and (��)
�: Inference Step:
�: if �1

X!Y

> �1
Y!X

then return X! Y
�: else return Y ! X

�.�.� The e�ect of feedforward and feedback orders on performance

First, we varied the dimension between 2 and 20 and compared the perfor-
mance of the cases FO(S) = BO(S) and BO(S) = 0 as can be seen in �g. �.
As one can see with the increase of dimension (when dimension is greater
than �), the performance exceeds %90. It can be seen that the increase of
feedback order in the absence of feedforward order results in a drop in per-
formance, however in the presence of feedforward order equal to feedback
order, the performance does not diminish.

Next we did a similar comparison between FO(S) = BO(S) and FO(S) =
0, which can be seen �g. �. In this case one can realise that the feedback
order of an IIR is the reason of the inferior performance in for the �lter with
zero FO in these experiments.

�.�.� The e�ect of additive noise on performance

We also used our inference method on a variant of the previous data generat-
ing mechanism where an additive zero mean Gaussian noise with di�erent
standard deviations � has been added to the output of the �lter. The plot for
the performance of the method in two di�erent cases where FO = BO = 5

and where FO = 0 and BO = 5 can be seen in �g. �. When FO is large the
performance of the method is quite robust to noise but when it is zero the
performance drastically decreases even in low noise regime scenarios. Nev-
ertheless in both cases the performance drops by increasing the amplitude
of the noise which is in line with the theoretical results derived in section �.�

�.� ���� ����� ��������

Since the aim of these thesis was to justify the applicability of this method
over real data, we have applied our method over a few di�erent examples
of real data where the ground truth about the causal structure of the data is
known a priori.
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Figure �: Comparison of performance of the inference algorithm in deterministic
(no noise) case, where feedback order is varying and feedforward order
(red plot) is either zero (blue plot) or equal to feedback order.

�.�.� Gas Furnace

Wehave applied our framework on gas furnace data available in [��, pp. ���].
The data is the consumed gas rate {X

t

} by a gas furnace and the produced
rate of CO

2

, {Y
t

}. The ground truth is assumed to be {X
t

}! {Y
t

}. Since the
data length in this data set is quite small (��� data points), and the result
of our method is very sensitive to the estimation of power spectral density
we have applied our method with taking di�erent lengths of window sizes
for Welch method into account. The results has been calculated as the di�er-
ence between �1

X!Y

-�1
Y!X

and plotted as a function of window length
which was ranging from 50 to 149 (inclusive) and the plot can be seen in sec-
tion �.�.�. The upper bound of window lengths has been chosen in a way so
that the variance of power spectral density estimation with Welch method
could be reduced by 2, comparing to the case where the full time window
is used for spectral density estimation; this is done because our estimators
are highly dependent on values of the spectrum close to zero and this vari-
ance reduction can help us to prevent large estimation error for such points.
As can be seen this di�erence is always positive and our method is able to
correctly infer the right causal direction. TiMiNO and Granger causality are
also both capable of inferring the correct direction in this case [��].
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Figure �: Comparison of performance of the inference algorithm in no noise case,
where feedback order is varying and feedback order (red plot) is either
zero (blue plot) or equal to feedforward order.

�.�.� Old Faithful Geyser

We have applied our method to data recorded from Old Faithful Geyser in
Yellow Stone National Park, Wyoming, USA [�]. The data recorded is the
time interval between successive eruptions (taking it as {X

t

}) and duration
of the subsequent eruption (represented here as {Y

t

}. Since part of the data
has been gathered during the night, some of the X

t

’s are only reported as
short, medium or long intervals. Following the analysis in [�] we replace
these values by 2, 3 and 4 minutes. We will consider X ! Y as the ground
truth causal structure as has been done in [��]. Since the data set size is
small (298), following the argument of the previous example, we plot the
di�erence�1

X!Y

-�1
Y!X

as a function of the chosen window length which
ranges from 50 to 149 (inclusive) and the results can be found in section �.�.�.
As can be seen, our method chooses the correct causal direction for all of the
window lengths in the interval. It has been reported in [��], TiMiNO is also
capable of inferring the correct causal structure however both linear and
nonlinear Granger causality methods fail on the problem.
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Figure �: Comparison of performance of the inference algorithm in case where
noise with di�erent amplitudes is to data. Two cases are considered. For
more details see the text.

�.�.� Neural Data: LFP recordings of the Rat Hippocampus

It is known that contrary to neocortex where the connections between di�er-
ent regions is usually bidirectional, the connections between di�erent parts
of hippocampal formation are mostly unidirectional [�, pp. ��]. An impor-
tant example of this type is the unidirectional connection between areas CA�
and CA� through Scha�er collaterals [�, pp. ��]. Despite this anatomical fact
the only study of causality based on local �eld potential recordings of CA�
and CA� of the hippocampus of the rat during sleep - to the best knowledge
of the authors - reports [�] that Granger causality infers strong bidirectional
relations between the two areas. [�] explains the possible reasons of this re-
sults as the long-loop feedback involving cortex andmedial septum, and also
di�use connections from CA� to CA�.

To do a comparison with Granger causality over neural data we applied
our framework on the recordings of the same sites using a di�erent data set
that is publicly available[�]. The local �eld potential has been recorded us-
ing an 8 shank probe having 64 channels downsampled to 1250Hz and the
shanks has been divided equally between CA� and CA� areas (leaving 32

channels for each area) which the recorded voltage has been ampli�ed by
1000. For more information on the details of gathered data please refer to



�.� ���� ����� �������� ��

40 60 80 100 120 140 160

Window size

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

�

1 X
!
Y
�

�

1 Y
!
X

Gas furnace

40 60 80 100 120 140 160

Window size

0.05

0.10

0.15

0.20

0.25

0.30

0.35

�

1 X
!
Y
�

�

1 Y
!
X

Old Faithful Geyser

Figure �: The plots for di�erence between the estimators of spectral expressions in
both directions as a function of window length chosen for Welch method.
The plot for gas furnace is on the left and for old geyser is on the right.
As one can see algorithm � will always pick the correct causal direction
independent of the window size.

[�]. The information used belongs to the rat named “vvp��” and for two dif-
ferent sessions of linear walking (where the rat had to walk a straight path)
and sleeping that are named as “2006-4-9_17-29-30” and “2006-4-9_18-43-
47” respectively for the �rst three minutes of recording. The Granger causal-
ity method that we used was based on Vector Auto Regressive model �tting
and the comparison of Residual Sum of Squares (RSS) between the outcome
of regressing LFP of CA� to LFP of CA� and vice versa. For this purpose
we used an available implementation of Granger causality by statsmodel
[�] for Python programming language; In this implementation when check-
ing whether {X

t

} is the cause of {Y
t

} the null hypothesis is true, if {X
t

}

does NOT Granger causes {Y
t

}. Since SIC assumes a prior that {X
t

} ! {Y
t

}

{Y
t

} ! {X
t

} we considered a forced decision scheme for Granger causality,
i.e. for any Granger causality test between two time series we select the one
with lower p-value as the correct causal direction excluding the possibility
of non of them being the cause of the other. Following the usual methodol-
ogy of causality analysis [�, ��] we have divided the duration of three min-
utes to 180 intervals of one second to reduce the e�ect of nonstationarity in
data analysis. Since there were 32 channels available for each site we have
calculated the success performance of the method in a time window as the
percentage of the channel pairs of CA� to CA� which are in total 1024 for
any time window of one second.

The results for the linear session can be seen in �g. �. The performance
of our inference method outperforms the performance of linear Granger
causality with a great di�erence. Moreover it stays (except for one time win-
dow) above the chance level discrimination line (the con�dence intervals
included), which is in line with the unidirectional anatomical projections
from CA� area to CA�.

The results for the sleeping session are indicated in �g. �. Despite the poor
performance of our method in this case we believe the results are highly



�� ���������� ��� �����������

0 50 100 150

Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

%
�

C
A

3
!

C
A

1

SIC WG

Figure �: Comparison of performance of the linear Granger causality and spectral
independence methods during the linear session for the mice “vvp��”. The
dashed line indicates when the performance is equal to �fty percent. For
more information please refer to text.

promising; First of all even in this case the method still outperforms lin-
ear Granger causality in inferring, the causal direction which is in line with
anatomical unidirectional connection. Moreover it stays above the chance
level discrimination for most of the time windows. Also our preliminary
analysis suggests that the reason for the poor performance in this case is
relevant to nonstationarity of the recorded LFP in both areas during those
speci�c time windows. For example for the time window starting at sec-
ond ���s (which the method gives close to zero performance), the shape of
the recordings from all the channels in both recording sites can be seen in
�g. � (upper �gure) and �g. � (lower �gure). One can appreciate that in both
cases the time series lacks the appearance of a weakly stationary times se-
ries; which can be acknowledged by comparing these time windows to the
neighbouring ones, especially the ones for which the performance of the
algorithm is relevantly high (also by comparing the activity in these areas
during the linear session).
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Figure �: Comparison of performance of the linear Granger causality and spectral
independence method in the sleeping session for the mice “vvp��”. The
dashed line indicates when the performance is equal to �fty percent. For
more information please refer to text.
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Figure �: LFP recordings of all the channels for period between ���s and ���s. The above �gure is the LFP from 32 channels of CA� area. Similarly in the bottom plot
we have presented the LFP recordings of 32 channels of CA� area for rat “vvp��” during sleep. The red window correspond to a �s time window (at ���s)
where SIC fails strikingly. One can appreciate that the signal is nonstationary in this time window, both in CA� and CA�.
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D I SCUS S ION AND OU TLOOK

In this work, we have introduced a method of causal inference, to infer the
causal direction between a pair of time series where only one of them is
causally in�uencing the other. This method is based on a recently developed
framework [��] that infers the causal direction between observed pairs of
observations by exploiting the fact that the mechanism that generates the
e�ect from the cause is in some way independent from the distribution of
the cause.

We have showed that this method is a modi�cation of a causal inference
method for high dimensional linear relationships when the dimension tends
to in�nity, that incorporates the temporal structure of observations.We have
derived some identi�ability results based on concentration of measure phe-
nomenon for the cases that the data generating process is an FIR �lter over
discrete and circular weakly stationary processes (c.f. to theorems �� and ��).
Moreover we proved that our main expression for deriving the causal direc-
tion, the “spectral estimator”, cannot be arbitrarily small in both directions
(c.f. to lemma �). We also derived some preliminary results on the perfor-
mance of the method under additive noise (c.f. to section �.�).

Based on some simulations over a toy model and our identi�ability results
we have developed our causal inference algorithm (c.f. to algorithm �). We
showed that the algorithm is e�ective on synthetic data, in the deterministic
case and also in the nondeterministic case under a weakly noisy regime. We
also successfully applied our method to real data; especially we showed that
our method outperforms Granger causality on inferring the correct causal
structure between the electrical activities recorded from CA� and CA� hip-
pocampal areas of rat hippocampus which has been anatomically veri�ed to
be a unidirectional connection. This, along the other examples on real world
as well as synthetic data already indicates that inferring causal relations on
time series might as well be exploited by causal inference methods based on
postulates di�erent than what has been proposed by Wiener and Granger.

�.� ������������ ��� ������ �����

Although our method performed well in experiments that have been done
so far, its poor performance (despite its superiority to Granger causality)
over neural data recorded from hippocampal formation in sleeping rat (see
section �.�.�) shows that the method can fail, specially when the assump-
tions of our method are not met; this can be because of nonstionarity of
data and/or because the modelling assumption does not hold, i.e. the real

��
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functional relationship between the two time series cannot be modelled ef-
fectively using LTI systems. Both of these scenarios can easily be realized
in real world problems. Therefore applying some approximation techniques
(like the small window sizes to assure stationarity that has been applied in
section �.�.�) can help us better model the behaviour of a real world phe-
nomenon and therefore to derive more accurate results. Besides, linear mod-
els are sometimes unable to capture all the details of a nonlinear system.
Developing a causal inference method based on ICM that could directly ad-
dress the problem of causal inference on time series that are causally related
through some nonlinear dynamics might signi�cantly improve the perfor-
mance of the method when the nonlinear dynamics are complex enough; as
previously mentioned the same idea has been exploited to address the causal
inference problem for static observables (see section �.�.�).

Another important issue was that our comparison analysis between SIC
and Granger causality was elementary since we haven’t addressed the prob-
lem of developing a statistical test for SIC method yet; an availability of p-
values for our method and a proper statistical test for it can greatly improve
the accuracy of the comparisons between this method and other causal in-
ference method for time series. One way to realize this (as been suggested
in [��] for a similar problem) is to use regression methods to �t an FIR �lter
to data and to calculate p-values by applying rotation matrices over coef-
�cients of this FIR �lter and recalculating the estimator values. Since FIR
�lters are a very small family of LTI �lters, a more advanced method needs
to be developed for statistical test, maybe based on the same idea but by �t-
ting ARMA �lters and/or by stronger identi�ability results that could help
to calculate p-values for statistical tests.

Our preliminary works indicates that there might exist stronger ties be-
tween ICM based method for nonlinear data and the SIC method; one needs
to realize that the causal inference method developed in [��] is based on the
idea that p

X

or the density of cause is independent from the function f that
relates it to the e�ect Y. This independence can indeed be phrased in terms
of independence between stochastic processes that f and p

X

are sampled
from. We leave the possibility of deriving such a connection between these
two methods to our future works.

Finally the identi�ably results under noise were preliminary. We believe
that one can derive more concise results relevant to the behaviour of this
causal inference method under additive white noise. We leave this extension
to our future works.
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In this appendix we develop the SIC method with a di�erent approach and
by means of linear operator theory.

�.� ��� �� ������ �������� ������

Suppose we want to generalize the causal inference framework for deter-
ministic linear relationship introduced in [��, ��] to in�nite dimensional
case where the input and output of the linear mapping are weakly station-
ary stochastic processes. In the following we treat the continuous case (The
inferences can be derived for discrete case just by replacing integral with
summation). As such assume the linear relationship

{Y
t

} = L({X
t

}),

(de�ned below), where {X
t

} and {Y
t

} are zero mean continuous Gaussian
processes with covariance functions K

xx

and K
yy

. With some overload of
nation we represent {X

t

} and {Y
t

} as X(t) and Y(t) respectively. Suppose L
maps X to Y with the following integral transform

Y(y) =
Z
L(x,y)X(x)dx.

Then its known from the literature [��] that

K
yy

= LK
xx

L>.

If moreover L and K
xx

would be time invariant we can write:

�K
yy

= �L ⇤�K
xx

⇤�L> (��)
�LL> = �L ⇤�L>

and based on lemma �, K
yy

and LL> are translation invariant. Since LL>

is positive de�nite it follows that �L ⇤�L> is a positive de�nite function.
Based on Bochner’s theorem and corollary � we get

TLL> = �LL>(0) =

Z
|�L|

2 =

Z
SLL>

TK
xx

= C
X

(0) =

Z
S
xx

TK
yy

= C
Y

(0) =

Z
S
yy

��
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where SLL> is the spectral density for �LL> . Therefore trace condition in
this case reads:

Z
S
yy

=

Z
SLL>

Z
S
xx

If we apply Fourier transform on both sides of eq. (��) we get:

S
yy

(⌫) = SLL>(⌫)Sxx(⌫)

Which simpli�es the trace condition to:
Z
S
yy

=

Z
S
yy

S
xx

Z
S
xx

Therefore we can rephrase our spectral independence criterion in the con-
text of linear operator theory as follows:

Postulate �. (SIC in Linear Operator Theory) Let f,g and h to be positive
de�nite functions on R and suppose g = f ⇤h and µ

f

,µ
g

and µ
h

their Fourier
transform measures respectively. Moreover assume these measures are abso-
lutely continuous with respect to a reference measure with spectral densities
S
f

,S
g

and S
h

. We say f and h are chosen independently if Cov(S
f

,

S

g

S

f

) = 0
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