

Patches, Planes and Probabilities: **A Non-local Prior for Volumetric 3D Reconstruction** Ali Osman Ulusoy Michael J. Black Andreas Geiger

Introduction

Textureless or reflective surfaces cause fundamental ambiguities in 3D reconstruction from images.

probabilistic 3D model

[1] is able to expose the reconstruction ambiguity but cannot resolve it without priors. Results show that pairwise priors cannot regularize large ambiguities common in MVS.

Contribution: a non-local prior formulation that encourages piecewise planarity in volumetric 3D reconstruction.

Probabilistic Foundation for MVS [1]

Each voxels contains two r.v.:

 $o_i \in \{0, 1\}$

input images

occupancy

 $a_i \in \mathbb{R}$

cont. color

Image formation:

pixel records first occupied voxel's color

Ray potentials penalize deviations of the model from the input images:

 $\psi_r^{\mathbf{a}}(\mathbf{o}_r, \mathbf{a}_r) = \rho(I_r - \mathbf{I}(\mathbf{o}_r, \mathbf{a}_r))$

Node

Interence

We use discrete-continuous sum-product belief propagation for inference.

For the cont. plane parameters, we use particle BP. Plane particles are generated by

- Sampling from plane pose prior
- Fitting planes to the current depth estimates in the segment

depth map

depth entropy

Experiments

Aerial datasets ~200 images LIDAR groundtruth

Ref. image

Most likely plane normal visualization

References

[1] Ulusoy, Geiger and Black: Towards Probabilistic Volumetric Reconstruction using Ray Potentials; 3DV 2015 - Best Paper Award [2] Pollard and Mundy: Change detection in a 3-d world; CVPR 2007 [3] Liu and Cooper: Statistical Inverse Ray Tracing for Image-Based 3D Modeling; PAMI 2014

Max Planck Institute for Intelligent Systems

MAX-PLANCK-GESELLSCHAFT

