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Abstract— Versatile motor skills for hitting and throwing
motions can be observed in humans already in early ages.
Future robots require high power-to-weight ratios as well
as inherent long operational lifetimes without breakage in
order to achieve similar perfection. Robustness due to passive
compliance and high-speed catapult-like motions as possible
with fast energy release are further beneficial characteristics.
Such properties can be realized with antagonistic muscle-based
designs. Additionally, control algorithms need to exploit the full
potential of the robot. Learning control is a promising direction
due to its the potential to capture uncertainty and control of
complex systems.

The aim of this paper is to build a robotic arm that is capable
of generating high accelerations and sophisticated trajectories
as well as enable exploration at such speeds for robot learning
approaches. Hence, we have designed a light-weight robot arm
with moving masses below 700 g with powerful antagonistic
compliant actuation with pneumatic artificial muscles. Rather
than recreating human anatomy, our system is designed to
be easy to control in order to facilitate future learning of
fast trajectory tracking control. The resulting robot is precise
at low speeds using a simple PID controller while reaching
high velocities of up to 12 m/s in task space and 1500 deg/s
in joint space. This arm will enable new applications in fast
changing and uncertain task like robot table tennis while being
a sophisticated and reproducible test-bed for robot skill learning
methods. Construction details are available.

I. INTRODUCTION

An intended outcome of robotics research is to make
robots help humanity by taking over simple work. This is al-
ready achieved for industrial applications like pick-and-place
tasks where robots move along a predefined and henceforth
unchanged trajectory. However, when it comes to uncertain,
high-dimensional and fast-changing tasks, e.g. walking and
running for humanoid robots (see Darpa Robotics Challenge
2015 [8]) or playing table tennis with an anthropomorphic
arm [18], robots are not able to reach the performance of
humans. The explanation lies in the interplay between control
algorithms that cannot fully use the potential of the given
system and the robot hardware design that makes control of
versatile movements problematic. The human arm design
owns many beneficial properties that widen the range of
possible trajectories, thus enrich the variety of tasks being
able to fulfill. For instance, it enables to lift heavy objects and
generate high accelerations at the end-effector. Hence high
velocities can be reached over a small distance which enables
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Fig. 1. Igus robolink lightweight arm (700 g) with a rotational and swivel
degree of freedom within each joint. It is actuated by 8 pneumatic artificial
muscles.

fast reaction times. Concurrently, the human arm is robust
due to the soft skin, inhibiting damage at collisions and
the built-in passive compliance which ensures the deflection
of the end-effector instead of breakage as a response to
external forces. Robustness against errors in control is an
additional benefit of compliance e.g. for grasping, moving
objects (fitting objects into a tight form) or for fast changing
tasks where full precision cannot be achieved like in table
tennis.

Robotic arms actuated by antagonistic pneumatic artificial
muscle (PAM) pairs incur some of these abilities. In addition,
such systems are interesting from a control point of view as
they pose hard challenges like non-linearities, time-varying
behavior (as a result of dependencies on temperature and
wearing) as well as hysteresis effects [4], [28]. Also, PAMs
show similarities to skeletal muscles in static and dynamic
behavior [6], [16], [25], [7]. Learning precise, fast and adapt-
able control of such actuation mechanisms may establish the
base for advances in building more complicated robots with
preferable abilities.

However, PAMs do not resemble the skeletal muscle to
the full extent. PAMs pull only along their linear axes and
break as well as wear out when curled. Muscle structures
bending over bones like the deltoid muscles that connects the
acromion with the humerus bone at the shoulder are hardly
realizable. Furthermore, biological muscles can be classified
as wet-ware whereas PAMs suffer from additional friction
when touching each other or the skeleton during usage. Thus,
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Fig. 2. Hardware components designed to keep friction low. (a) 6 PAMs are
located directly below the Igus arm in order to pull the cables in the same
direction as they exit the arm so that deflection is minimized. Necessary
bending of the cables is realized by Bowden cables. (b) 2 PAMs actuating
the first DoF are located on top of the base frame. They are longer than the
other 6 PAMs due to the bigger radius of the first rotational movement. (c)
Cables need pretension to not slip off the guidances within the arm. Springs
push a roll to wind up the remaining cable length. This happens mainly if
the robot is not pressurized.

bi-articular configurations (influencing 2 DoFs) like present
in the human arm with 7 DoFs are hard to realize. Moreover,
non-linear effects in actuation become more severe in case
high weights have to be accelerated. Although it seems that
PAMs are well suited to be attached directly to the joints
instead of using cables due to their high power-to-weight
ratio, a stable and hence heavy skeleton is necessary.

Still, many systems have been designed that aim at
reproducing human anatomy by using pneumatic artificial
muscles. For our purpose it is crucial that anthropomorphism
does not hinder the controllability of the resulting arm. Al-
though recent publications show good tracking performance
of one PAM in position [31], [29], [2], using PAM-based
systems with more DoFs for fast trajectory tracking appears
to be less satisfactory although control algorithms could be
successful on a system that is engineered to support fast
motions. The performance of PAM-actuated robots has thus
been limited to slow movements compared to servo motor
driven robots. In table I, existing PAM-actuated arms are
listed along with the most complex (form and velocity)

tracked trajectory in case it was mentioned. We identify the
following key problems for building a robotic arm for our
intended task: 1) friction between muscles, 2) friction be-
tween muscles and skeleton, 3) high-dimensionality without
modularity, 4) increased moving mass due to PAMs attached
to joints directly, 5) additional static friction due to deflection
of cables, 6) heavy-weight segments, 7) largely dependent
DoFs.

Learning control algorithms have been incorporated for
fast-changing and uncertain task like table tennis [17].
Desired extensions for the robotic systems were, on the
one hand, the ability to generate higher accelerations to
reach similar velocities over shorter distances and, on the
other hand, robustness for exploration at high velocities.
The latter is essential for learning striking motions. As a
result, successful approaches in simulations usually have to
be constrained for safety purposes on the real robot.

For the before-mentioned reason, we aim at creating
a robot that fulfills our requirements while avoiding the
problems above in order to achieve precise and fast move-
ments. Therefore, we use the lightweight and tendon-driven
Igus Robolink arm (see Fig. 1) with four degrees of free-
dom (DoF) actuated by eight PAMs. We want to highlight
that we do not intend to build a safe robot in terms of
collaborating with humans or other robots as the release of
stored energy in the antagonistic PAM pair can always lead
to collisions with nearby object. Our robot is designed in a
way that it can physically sustain high velocities at the end-
effector and ensure to stay within predefined joint ranges due
to the antagonistic configuration of two PAMs. Motions gen-
erated by one PAM can be countered with the antagonistic
PAM by applying a minimum pressure and decelerate before
damage can happen. We show the effectiveness of this design
in section III.

We encourage other researcher to use our platform as a
testbed for learning control approaches. We used off-the-
shelf and affordable parts like PAMs by Festo, the robotic
Arm by Igus and build the base using Item profiles. All
necessary documents to rebuild our system as well as a
video of its performance can be found at http://ei.is.
tuebingen.mpg.de/person/dbuechler.

The paper is structured as follows: A technical description
of the arm is given in section II. Experiments in section III
show high velocity and acceleration profiles highlighting the
robustness of the system. A simple manually tuned PID
controller is utilized to follow slow trajectories for all four
DoF simultaneously emphasizing the largely independent
DoFs due to low moving masses as well as beneficial con-
struction considerations. We briefly summarize and discuss
the implications of the setup in section IV.

II. HARDWARE CONFIGURATION

This arm has been built to facilitate precise and fast con-
trol. We do so by using a light-weight 2-link tendon-driven
arm by Igus [14] with a swivel and rotational DoF in each of
the two joints. Each DoF is actuated by two antagonistically
aligned Festo fluidic muscles pairs. The contraction ratio as
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Fig. 3. Schematic description of the position control loop for one PAM muscle pair. The absolute value of the output signal of the position control PID
receives one of both muscle dependent on the sign of this signal. The other PAM is set to its individual minimum pressure. The pressure within each PAM
is governed by separate PIDs that set the input voltage to the proportional air flow valves. The sensor values are provided by Festo pressure sensors and
angle encoders.

well as the pulling force is influenced by the air pressure
within each PAM. Thus, a linear controller regulates the
pressure within each PAM using Festo proportional valves.
As a result, the control algorithm that regulates the movement
works on top of these. In the following, we present the
characteristics of the elements utilized for the arm along with
the connection to our guidelines.

A. Igus Robolink light-weight arm

The Igus Robolink arm is especially suitable for minimiz-
ing non-linearities and dependencies between DoFs due to
high moving masses. Two links and the elbow joint weigh
together less than 700 g. The first joint which is fixed to
the base contributes minor to the moving mass. In addition,
it is driven by Dyneema tendons (2mm diameter, tensile
strength of 4000 N) that allow to fix the PAMs in the
base. Necessary deflections within the Igus arm are realized
through Bowden cables. They guide the cables within the
arm and keep the length unchanged during movement. This
enables to actuate each DoF mostly independently. Still little
cross-talking between the DoFs persists as the PAMs share
the same air pressure supply as well as due to the non-zero
moving mass. The arm can be easily extend to a higher

number of DoF because of its modular structure.
Cable-driven systems usually suffer from additional fric-

tion. For this reason, the tendons are only minimally bended
by our construction. All PAMs pull their respective tendons
in the same direction as they exit the Igus arm. Two PAMs
actuate the first rotational DoF in the base joint in horizontal
orientation whereas the other 6 PAMs pull in vertical di-
rection as can be seen in Fig. 2 (a) and (b), respectively.
Fig. 2 (c) displays the pretension mechanism that prevents
the cables from jumping out of the guidances within the arm.
The joint angles are measured by angular encoders with a
resolution of approximately 0.07◦. The kinematic structure
is depicted in Fig. 4(b).

B. Pneumatic Artificial Muscles

We use pneumatic artificial muscles by Festo to actuate
the robotic arm. Off-the-shelf PAMs were incorporated as we
want to facilitate the rebuilding process. They consist of an
inner rubber tube surrounded by a braided weave composed
of repeated and identical rhombuses. An increase in air
pressure leads to a gain in diameter of the inner balloon. The
double-helix-braided sheave transforms the axial elongation
into a longitudinal contraction. This complete process can be

TABLE I
A COLLECTION OF PNEUMATIC BASED ROBOTIC ARM-LIKE SYSTEMS IS LISTED NEXT TO THE NUMBER OF DOFS IN JOINT SPACE AND THE FASTEST

AND MOST COMPLEX TRACKED TRAJECTORY IN CASE IT HAS BEEN MENTIONED.

YEAR PUBLICATION # DoF FASTEST AND MOST COMPLEX TRAJECTORY TRACKED
2014 Rezoug et al. [22] 7 Sinusoidal reference with f=1 Hz for one DoF
2012 Hartmann et al. [12] 7 Sinusoidal reference in task space (x: 1 Hz,y: 2 Hz,z not tracked)
2012 Ikemoto et al. [15] 7 (17 PAMs) Human taught reference (similar to sinusoidal) periodic with f=appr.0.33 Hz
2009 Ahn and Ahn [1] 2 triangular reference with 0.05 Hz
2009 Shin et al. [23] 1 (4 PAMs) Sinusoidal reference with f=6 Hz for one DoF
2009 Van Damme et al. [30] 2 (4 PAMs) Sinusoidal reference with f=0.33 Hz for both DoF
2007 Festo Airic’s arm [10] 7 (30 PAMs) -
2006 Thanh and Ahn [24] 2 Circle with 0.2 Hz using both DoFs
2005 Hildebrandt et al. [13] 2 Step and sinusoidal reference with 0.5 Hz
2005 Tondu et al. [26] 7 -
2004 Boblan et al. [3] 7 in arm -
2000 Tondu and Lopez [27] 2 independent sinusoidal activation of each DoF with 0.1 Hz
1998 Caldwell et al. [5] 7 Response of shoulder joint to 90◦ step reference
1995 Caldwell et al. [4] 7 Response to a square wave reference input (0.2 Hz, 1 DoF)



fully characterized according to the radius of the inner tube
and the braid angle. The inner pressure plays the same role
as the neuronal activation level of a biological muscle. The
dynamics of both, PAMs and biological muscles, are known
to follow the Hill muscle model [6], [16], [25]

(F +a)(V +b) = b(F0 +a), (1)

where F and V are the tension and contraction velocity of the
muscle, a and b muscle-dependent empirical constants and F0
the maximum isometric force generated in the muscle. Also
the static behavior of PAMs is in accordance to biological
muscles [7].

PAMs have been mainly applied due to their safety prop-
erties and high power-to-weight ratio for slow movements
with the ability to carry heavy objects. Challenging in term of
control is the non-linear relationship between length, contrac-
tion velocity and pressure as well as problematic effects like
temperature dependency, time-variance and hysteresis [28].

Despite these issues, PAMs have beneficial properties we
try to exploit here. We use two 1 m and six 0.6 m long PAMs
with a diameter of 20 mm which can generate maximum
forces of up to 1500 N at 6 bar. We limit the pressure to a
maximum of 3 bar because the generated accelerations are
sufficient and due to safety precautions. Powerful actuation
can easily overcome the resisting force of static friction
and the antagonistic muscle pair configuration reduces the
overshoot in velocity. Also, fast and catapult-like movements
can be generated by pressurizing both PAMs and discharging
one of them. This kind of energy storage and release can also
be found in human and primate arms. Especially for tasks
like table tennis this property can be valuable.

At such high velocities, antagonistic muscle structures can
additionally be used to avoid damaging the robot. Our system
is designed in such a way that the arm never exceeds fixed
joint limits by supplying an individual minimum pressure to
counter the movement generated by the respective antagonis-
tic PAM. Thus, the oppositely acting PAMs avoid damages
occurring due to undesired motions. Robotic systems with
servomotors must take care not to reach too high accelera-
tions as the movement might not be decelerated fast enough.
Moreover, PAMs are open loop position stable, meaning that
the set signal does not have to be zero in order to reach
equilibrium. By contrast, servo motors open loop velocity
stable [28].

Another useful property is the inherent compliance that
adds robustness to task fulfillment if the trajectory cannot
be tracked perfectly. For instance, touching an object with
an compliant actuator is easier as the velocity must not be
absolute zero in order to not damage the robot or the object.
Using active compliance on a servo-motor based robotic
system requires high sampling rates in order to react external
forces in real-time.

C. Software Framework

The complete system comprises eight pressure sensors
and proportional valves as well as four incremental angular
encoders to govern and describe the movement. Control is
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Fig. 4. (a) Pressure step response from minimum to maximum value
of 3 bar. The desired pressure value can be reached within approximately
250 ms. (b) Kinematic structure of the Igus Robolink arm. A rotational DoF
is located at the base (θ1) and the end-effector (θ4). Two swivel DoFs (θ2
and θ3) are placed in between. θ1 and θ2 are realized in joint 1 and θ3 and
θ4 in joint 2.

eased by delegating low level task, such as extraction of
the angular value from the A and B digital signals given
by the encoder or regulating the pressure within each PAM.
The National Instruments PCIe 7842R FPGA card has been
used to take over these tasks and govern the communication
with the hardware. The FPGA was programmed in Labview.
To assure fast implementation, we used the FPGA Interface
C API to generate a bitfile along with header files which
can be incorporated in any C project. Thus, the control
algorithm can be implemented in C on top of the basic
functionalities supplied by the FPGA. The sensor values
are read with 10 kHz and new desired pressure values are
adjusted at 1 kHz. Fig. 4(a) shows the pressure response to a
step in desired value from minimum (0 bar) to maximum air
pressure (3 bar). The resulting pressure regulation reaches
the desired value within a maximum of 0.25 seconds.

III. EXPERIMENTS

Our robotic arm has a modular structure that allows to
control each DoF almost independently. We show that by
tracking ramp-like signals as well as a sinusoidal reference in
joint space for each DoF separately. In addition, high velocity
and acceleration profiles are demonstrated to underline the
ability of the arm to be utilized for hitting and catapult-like
motions while avoiding damages at such paces.

A. PID Control

We use a simple PID controller to track predefined trajec-
tories in joint-space. The underlying control law

u = Kpq̃+Kd ˙̃q+Ki

∫ t

0
q̃(x)dx, (2)

with the position and velocity error q̃ = qdes−q and ˙̃q, can
be adjusted to a system by changing the position, velocity
and integral gains Kp,Kd and Ki. We tuned both the pressure
and the position regulating PIDs manually.

PIDs are widely used in industry because of their simple
implementation and intuitive tuning procedure. However,
they are not well suitable for tracking tasks. Besides that, a
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Fig. 5. The tracking performance shows satisfactory results using a manually-tuned PID controller. Some overshoots for rapid change in reference signals
are visible that cannot be compensated. For smooth changes in (b) the trajectory is tracked sufficiently good. (a) Sinusoidal reference with f=0.05 Hz. (b)
Sinusoidal reference with f=0.1 Hz. (c) Truncated ramp reference for DoF 1 to 3 and rectangular reference for DoF 4. (d) Same reference as in (a) but
twice as fast.

strong coupling between the DoFs confines its application. In
addition, the position feedback is always delayed by at least
one cycle and the integral sum takes some iterations for cor-
rection in case the reference suddenly changes. Nevertheless,
integration of position errors is necessary if gravitation is
present. For position regulation, the controller output u must
set the desired pressure for both PAMs pdes,1 and pdes,2 of an
antagonistic pair. We discriminate by considering the sign of
the control signal. Depending on the sign one of both PAMs
is set to the absolute value of the control signal u while the
other is assigned with an individual minimum pressure pmin,1
or pmin,2 respectively

pdes,1 =

{
|u|
pmin,1

pdes,2 =

{
pmin,2 if u >= 0
|u| otherwise.

(3)

The schematic description of pressure and position reg-
ulation representative for each antagonistic muscle pair is
depicted in Fig. 3.

B. PID Tracking

The aim is to highlight the modularity and low controlling
demands of the arm by showing that adequate tracking
performance is possible using linear controllers only. There-
fore, we track all 4 DoFs simultaneously for two kinds of
reference signals as can be seen in Fig. 5. In (a) and (c) a
truncated triangular signal was tracked in 10 and 20 seconds,
respectively. All graphs show that for rapidly changed refer-
ences, tracking becomes inaccurate. This is mainly due to the
general problems with PID controllers mentioned above but
also due to the distribution of the controller output signal.
For fast correction, the PAM countering the movement has
to start pulling beginning at its maximum elongation as the
minimum pressure has been set. Thus, in the first moments
the contraction of the PAM has no effect on the joint angle.
For severe cases, this forbearance is followed by a too strong
correction as can be seen for DoF 2 in Fig. 5 (a) and (c) for

the middle part of the graph. This DoF drives the most mass
and hence is harder to control precisely compared to the
other DoFs. A controller that allows co-contraction of both
PAMs may solve this problem.

Sub-figures (b) and (d) show tracked sinusoidal references
with 0.05 and 0.1 Hz. Here the same issues occur for rapid
changes of the reference. However, for smooth changes the
reference can be followed with some small delay with all
DoF. This emphasizes that the stiction level in the system is
low.

C. Maximum Velocity and Acceleration Profiles
High accelerations are necessary to reach high velocities

on a short distance to enable a versatile bouquet of possible
trajectories and fast reaction. Our system can generate high
velocities and accelerations due to the strength of the PAMs
used while being robust as a result of the antagonistic muscle
configuration. This is critical for exploration of fast hitting
motions using learning control methods.

To show this, a fast trajectory was generated using the
swivel DoF 2 and 3. The respective minimum pressure was
set to one of the PAMs of each muscle pair while the
maximum pressure was assigned to the corresponding PAM.
The subsequent switching from maximum to minimum in
each PAM generated a fast trajectory at the end-effector as
can be seen in Fig. 6 (a). Note that this set signal generates
the fastest movement at the end-effector that a closed loop
controller could have determined. We did not find any other
set signal that moved the arm that near to its joint limits and
generated such high peak velocities and accelerations. For
this reason, we renounced on performing this experiment in
closed loop. The task space x = [x1,x2,x3]

T has been deter-
mined from the joint space coordinates q = [q1,q2,q3,q4]

T

for each data-point using the forward kinematics equations
x = T q

x (q). Fig. 4 (b) makes the derivation of the forward
kinematics equations easy. We do not consider the orien-
tation of the end-effector here. The resulting velocity and
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ẍ
[m

/s
2 ]

(c)

0 0.1 0.2 0.3 0.4

0

500

1,000

1,500

t [s]

q̇
[d

eg
/s
]

(d)

q2
q3

0 0.1 0.2 0.3 0.4
−6

−4

−2

0

2

·104

t [s]

q̈
[d

eg
/s

2 ]

(e)

q2
q3

Fig. 6. High velocity and acceleration profiles in task and joint space. DoF 2 and 3 were actuated with the maximum pressure moving in between the
joint limits. (a) Trajectory of the end-effector in task space. (b) Velocity profile along the trajectory in (a). Maximum value is 12m/s. (c) Acceleration
profile along the trajectory in (a). The maximum value reaches up to 200 m/s2. (d) Angular velocity profile for both swivel DoF. DoF 3 is faster as it has
to accelerate less weight than DoF 2. The maximum value of about 1500 deg/s is reached with DoF 3. (e) Angular accelerations show a maximum of
approximately 28000 deg/s2

acceleration profiles, depicted in (b) and (c), show at their
respective maxima approximately 12 m/s and 200 m/s2. As a
comparison, the fast Barrett Wam arm that has been used for
table tennis [18], can generate peak velocities of 3 m/s and
peak accelerations of 20 m/s. The resulting angular velocities
in DoF 3 reaches up to 1500 deg/s and angular acceleration
of 28000 deg/s2.

IV. CONCLUSION

A lightweight robotic arm with four DoFs actuated by
eight pneumatic artificial muscles has been designed using
only off-the-shelf components. We considered other PAM-
actuated robotic arms to adapt the construction for our
purpose.

A. Discussion and Summary of Contributions

Although we could easily extend the Igus robotic arm to
more DoFs, we renounced on constructing a too complex
system to avoid running into to many problems at once. Still
skillful motion are possible with four DoFs as only three
DoFs are needed to reach each point in the workspace. Hav-
ing this system, the success in task fulfillment depends on the
control algorithm. Although this robot has the capability to
perform well in hitting and striking tasks, demands are high

for the controlling part as such tasks require fast decision
making and precise control.

To our knowledge, no muscle based system has been
designed to reach the same velocities and accelerations in
task space as our robotic arm while being sufficiently robust.
We achieved that by minimizing the weight that needs to be
moved and used powerful PAMs. The antagonistic muscle
configuration assured that joint limits are not reached despite
of the high kinetic energy. Control has been eased due to the
avoidance of bending of the tendons as well as the antagonis-
tic muscle pair configuration. Sufficient tracking performance
has been shown incorporating simple and manually tuned
linear controllers.

B. Future Work
Taking humans as an example of successful systems that

are able to overcome the non-linearities, task uncertainty
and high-dimensionality of the human motor system, learn-
ing control is a promising direction. Experiments provide
compelling evidence for the employment of Reinforcement
Learning (RL) in the human sensorimotor learning sys-
tem [20]. In particular, model-based RL which is known
for its high sample efficiency [9] relies on precise internal
models. Involvement of forward models in human motor
learning can be verified on the behavioral level [11].



Recent advances in Machine Learning show that human
like performance can be achieved. For instance, combina-
tions of Neural Networks with Reinforcement Learning [19]
proved to extract knowledge from high-dimensional data and
use it to play Atari games, mostly better than human pro-
fessionals do. Another promising direction are probabilistic
kernel methods like Gaussian Processes [21]. They can be
incorporated to learn from previous experience and give
notion of how certain the computed solution is given the
data.

In our future work, we want to implements sophisticated
learning control approaches that are a combination of the
different directions mentioned above. After achieving better
performance we will extend the arm to more DoFs and want
to test whether bi- and tri-articular configurations can be
beneficial for our class of tasks.

In order to accelerate the advances in the this field, we en-
courage other researcher to rebuild our system and test learn-
ing control approaches. Construction details are available on-
line (http://ei.is.tuebingen.mpg.de/person/
dbuechler). We tried to make a step towards enabling
plug-and-play of successful learning control approaches in
simulation to a real system. Also improvements of our design
will be updated and it is desired to share further advances in
an open source manner.
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