
Supplementary Material for
Learning Sparse High Dimensional Filters:

Image Filtering, Dense CRFs and Bilateral Neural Networks

Varun Jampani1, Martin Kiefel1,2 and Peter V. Gehler1,2
1Max Planck Institute for Intelligent Systems, Tübingen, 72076, Germany

2Bernstein Center for Computational Neuroscience, Tübingen, 72076, Germany
{varun.jampani, martin.kiefel, peter.gehler}@tuebingen.mpg.de

This supplementary material contains a more detailed
overview of the permutohedral lattice convolution in Sec-
tion 1, more experiments in Section 2 and additional results
with experiment protocols for the experiments presented be-
fore in Section 3.

1. General Permutohedral Convolutions
A core technical contribution of this work is the gen-

eralization of the Gaussian permutohedral lattice convolu-
tion proposed in [1] to the full non-separable case with the
ability to perform backpropagation. Although, conceptu-
ally, there are minor difference between non-Gaussian and
general parameterized filters, there are non-trivial practical
differences in terms of the algorithmic implementation. The
Gauss filters belong to the separable class and can thus be
decomposed into multiple sequential one dimensional con-
volutions. We are interested in the general filter convolu-
tions, which can not be decomposed. Thus, performing a
general permutohedral convolution at a lattice point requires
the computation of the inner product with the neighboring
elements in all the directions in the high-dimensional space.

Here, we give more details of the implementation dif-
ferences of separable and non-separable filters. In the fol-
lowing we will explain the scalar case first. Recall, that
the forward pass of general permutohedral convolution in-
volves 3 steps: splatting, convolving and slicing. We follow
the same splatting and slicing strategies as in [1] since these
operations do not depend on the filter kernel. The main dif-
ference between our work and the existing implementation
of [1] is the way that the convolution operation is executed.
This proceeds by constructing a blur neighbor matrix K
that stores for every lattice point all values of the lattice
neighbors that are needed to compute the filter output.

The blur neighbor matrix is constructed by traversing
through all the populated lattice points and their neighbor-
ing elements. This is done recursively to share computa-
tions. For any lattice point, the neighbors that are n hops

(1, 1)

x

y

1D
-P
erm

utohedral
L
attice

Figure 1. Illustration of 1D permutohedral lattice construction.
A 4 × 4 (x, y) grid lattice is projected onto the plane defined by
the normal vector (1, 1)>. This grid has s + 1 = 4 and d = 2
(s + 1)d = 42 = 16 elements. In the projection, all points of the
same color are projected onto the same points in the plane. The
number of elements of the projected lattice is t = (s+1)d−sd =
42 − 32 = 7, that is the (4× 4) grid minus the size of lattice that
is 1 smaller at each size, in this case a (3 × 3) lattice (the upper
right (3× 3) elements).

away are the direct neighbors of the points that are n − 1
hops away. The size of a d dimensional spatial filter with
width s+1 is (s+1)d (e.g., a 3×3 filter, s = 2 in d = 2 has
32 = 9 elements) and this size grows exponentially in the
number of dimensions d. The permutohedral lattice is con-
structed by projecting a regular grid onto the plane spanned
by the d dimensional normal vector (1, . . . , 1)>. See Fig. 1

1



for an illustration of 1D lattice construction. Many cor-
ners of a grid filter are projected onto the same point, in
total t = (s+ 1)

d − sd elements remain in the permuto-
hedral filter with s neighborhood in d − 1 dimensions. If
the lattice has m populated elements, the matrix K has size
t ×m. Note that, since the input signal is typically sparse,
only a few lattice corners are being populated in the slicing
step. We use a hash-table to keep track of these points and
traverse only through the populated lattice points for this
neighborhood matrix construction.

Once the blur neighbor matrix K is constructed, we can
perform the convolution by the matrix vector multiplication

l′ = BK, (1)

where B is the 1 × t filter kernel (whose values we will
learn) and l′ ∈ R1×m is the result of the filtering at the
m lattice points. In practice, we found that the matrix K
is sometimes too large to fit into GPU memory and we di-
vided the matrix K into smaller pieces to compute Eq. 1
sequentially.

In the general multi-dimensional case, the signal l is of c
dimensions. Then the kernel is of size B × t and K stores
the c dimensional vectors accordingly. When the input and
output points are different, we slice only the input points
and splat only at the output points.

2. Additional Experiments
In this section we discuss more use-cases for the learned

bilateral filters, one use-case of BNNs and two single filter
applications for image and 3D mesh denoising.

2.1. Recognition of subsampled MNIST

One of the strengths of the proposed filter convolution
is that it does not require the input to lie on a regular grid.
The only requirement is to define a distance between fea-
tures of the input signal. We highlight this feature with the
following experiment using the classical MNIST ten class
classification problem [12]. We sample a sparse set of N
points (x, y) ∈ [0, 1] × [0, 1] uniformly at random in the
input image, use their interpolated values as signal and the
continuous (x, y) positions as features. This mimics sub-
sampling of a high-dimensional signal. To compare against
a spatial convolution, we interpolate the sparse set of values
at the grid positions.

We take a reference implementation of LeNet [11] that
is part of the Caffe project [10] and compare it against the
same architecture but replacing the first convolutional layer
with a bilateral convolution layer (BCL). The filter size and
numbers are adjusted to get a comparable number of param-
eters (5× 5 for LeNet, 2-neighborhood for BCL).

The results are shown in Table 1. We see that training
on the original MNIST data (column Original, LeNet vs.

Test Subsampling
Method Original 100% 60% 20%

LeNet 0.9919 0.9660 0.9348 0.6434
BNN 0.9903 0.9844 0.9534 0.5767
LeNet 100% 0.9856 0.9809 0.9678 0.7386
BNN 100% 0.9900 0.9863 0.9699 0.6910
LeNet 60% 0.9848 0.9821 0.9740 0.8151
BNN 60% 0.9885 0.9864 0.9771 0.8214
LeNet 20% 0.9763 0.9754 0.9695 0.8928
BNN 20% 0.9728 0.9735 0.9701 0.9042

Table 1. Classification accuracy on MNIST. We compare the
LeNet [11] implementation that is part of Caffe [10] to the net-
work with the first layer replaced by a bilateral convolution layer
(BCL). Both are trained on the original image resolution (first two
rows). Three more BNN and CNN models are trained with ran-
domly subsampled images (100%, 60% and 20% of the pixels).
An additional bilinear interpolation layer samples the input signal
on a spatial grid for the CNN model.

BNN) leads to a slight decrease in performance of the BNN
(99.03%) compared to LeNet (99.19%). The BNN can be
trained and evaluated on sparse signals, and we resample the
image as described above for N = 100%, 60% and 20% of
the total number of pixels. The methods are also evaluated
on test images that are subsampled in the same way. Note
that we can train and test with different subsampling rates.
We introduce an additional bilinear interpolation layer for
the LeNet architecture to train on the same data. In essence,
both models perform a spatial interpolation and thus we ex-
pect them to yield a similar classification accuracy. Once
the data is of higher dimensions the permutohedral convo-
lution will be faster due to hashing the sparse input points,
as well as less memory demanding in comparison to naive
application of a spatial convolution with interpolated val-
ues.

2.2. Image Denoising

The main application that inspired the development of
the bilateral filtering operation is image denoising [3], there
using a single Gaussian kernel. Our development allows to
learn this kernel function from data and we explore how to
improve using a single but more general bilateral filter.

We use the Berkeley segmentation dataset
(BSDS500) [2] as a test bed. The color images in the
dataset are converted to gray-scale, and corrupted with
Gaussian noise with a standard deviation of 25

255 .
We compare the performance of four different filter mod-

els on a denoising task. The first baseline model (“Spatial”
in Table 2, 25 weights) uses a single spatial filter with a
kernel size of 5 and predicts the scalar gray-scale value at
the center pixel. The next model (“Gauss Bilateral”) ap-
plies a bilateral Gaussian filter to the noisy input, using po-
sition and intensity features f = (x, y, v)>. The third setup
(“Learned Bilateral”, 65 weights) takes a Gauss kernel as
initialization and fits all filter weights on the “train” image



Figure 2. Sample data for 3D mesh denoising. (top) Some 3D
body meshes sampled from [13] and (bottom) the corresponding
noisy meshes used in denoising experiments.

set to minimize the mean squared error with respect to the
clean images. We run a combination of spatial and permuto-
hedral convolutions on spatial and bilateral features (“Spa-
tial + Bilateral (Learned)”) to check for a complementary
performance of the two convolutions.

Method PSNR

Noisy Input 20.17
Spatial 26.27
Gauss Bilateral 26.51
Learned Bilateral 26.58
Spatial + Bilateral (Learned) 26.65

Table 2. PSNR results of a denoising task using the BSDS500
dataset [2]

The PSNR scores evaluated on full images of the “test”
image set are shown in Table 2. We find that an untrained
bilateral filter already performs better than a trained spatial
convolution (26.27 to 26.51). A learned convolution fur-
ther improve the performance slightly. We chose this simple
one-kernel setup to validate an advantage of the generalized
bilateral filter. A competitive denoising system would em-
ploy RGB color information and also needs to be properly
adjusted in network size. Multi-layer perceptrons have ob-
tained state-of-the-art denoising results [4] and the permu-
tohedral lattice layer can readily be used in such an archi-
tecture, which is intended future work.

Figure 3. 4D isomap features for 3D human bodies. Visualiza-
tion of 4D isomap features for a sample 3D mesh. Isomap feature
values are overlaid onto mesh vertices.

2.3. 3D Mesh Denoising

Permutohedral convolutions can naturally be extended to
higher (> 2) dimensional data. To highlight this, we use the
proposed convolution for the task of denoising 3D meshes.

We sample 3D human body meshes using a generative
3D body model from [13]. To the clean meshes, we add
Gaussian random noise displacements along the surface
normal at each vertex location. Figure 2 shows some sam-
ple 3D meshes sampled from [13] and corresponding noisy
meshes. The task is to take the noisy meshes as inputs and
recover the original 3D body meshes. We create 1000 train-
ing, 200 validation and another 500 testing examples for the
experiments.

Mesh Representation: The 3D human body meshes
from [13] are represented with 3D vertex locations and
the edge connections between the vertices. We found that
this signal representation using global 3D coordinates is
not suitable for denoising with bilateral filtering. There-
fore, we first smooth the noisy mesh using mean smooth-
ing applied to the face normals [17] and represent the noisy
mesh vertices as 3D vector displacements with respect to
the corresponding smoothed mesh. Thus, the task becomes
denoising the 3D vector displacements with respect to the
smoothed mesh.

Isomap Features: To apply permutohedral convolution,
we need to define features at each input vertex point. We
use 4 dimensional isomap embedding [16] of the given
3D mesh graph as features. The given 3D mesh is con-
verted into weighted edge graph with edge weights set to
Euclidean distance between the connected vertices and to
infinity between the non-connected vertices. Then 4 di-
mensional isomap embedding is computed for this weighted
edge graph using a publicly available implementation [15].
Fig. 3 shows the visualization of isomap features on a sam-
ple 3D mesh.



Noisy Mesh
Normal

Smoothing
Gauss

Bilateral
Learned
Bilateral

Vertex Distance
(RMSE) 5.774 3.183 2.872 2.825

Normal Angle
Error 19.680 19.707 19.357 19.207

Table 3. Body Denoising. Vertex distance RMSE values and nor-
mal angle error (in degrees) corresponding to different denoising
strategies averaged over 500 test meshes.

Figure 4. Sample Denoising Result. Ground truth mesh (left),
corresponding given noisy mesh (middle) and the denoised result
(right) using learned bilateral filter.

Experimental Results: Mesh denoising with a bilateral
filter proceeds by splatting the input 3D mesh vectors (dis-
placements with respect to smoothed mesh) into the 4D
isomap feature space, filtering the signal in this 4D space
and then slicing back into original 3D input space. The Ta-
ble 3 shows quantitative results as RMSE for different de-
noising strategies. The normal smoothing [17] already re-
duces the RMSE. The Gauss bilateral filter results in signifi-
cant improvement over normal smoothing with and learning
the filter weights again improves the result. A visual result
is shown in Figure 4.

3. Additional results
This section contains more qualitative results for the ex-

periments of the main paper.

3.1. Lattice Visualization

Figure 5 shows sample lattice visualizations for different
feature spaces.

3.2. Color Upsampling

In addition to the experiments discussed in the main pa-
per, we performed the cross-factor analysis of training and

Test Factor

2× 4× 8× 16×

Tr
ai

n
Fa

ct
or 2× 38.45 36.12 34.06 32.43

4× 38.40 36.16 34.08 32.47

8× 38.40 36.15 34.08 32.47

16× 38.26 36.13 34.06 32.49

Table 4. Color Upsampling with different train and test up-
sampling factors. PSNR values corresponding to different up-
sampling factors used at train and test times on the 2 megapixel
image dataset, using our learned bilateral filters.

testing at different upsampling factors. Table 4 shows the
PSNR results for this analysis. Although, in terms of PSNR,
it is optimal to train and test at the same upsampling factor,
the differences are small when training and testing upsam-
pling factors are different. Some images of the upsampling
for the Pascal VOC12 dataset are shown in Fig. 6. It is es-
pecially the low level image details that are better preserved
with a learned bilateral filter compared to the Gaussian case.

3.3. Depth Upsampling

Figure 7 presents some more qualitative results compar-
ing bicubic interpolation, Gauss bilateral and learned bilat-
eral upsampling on NYU depth dataset image [14].

3.4. Character Recognition

Figure 8 shows the schematic of different layers of the
network architecture for LeNet-7 [12] and DeepCNet(5,
50) [6, 8]. For the BNN variants, the first layer filters are
replaced with learned bilateral filters and are learned end-
to-end.

3.5. Semantic Segmentation

Some more visual results for semantic segmentation
are shown in Figure 9. These include the underlying
DeepLab CNN[5] result (DeepLab), the 2 step mean-
field result with Gaussian edge potentials (+2stepMF-
GaussCRF) and also corresponding results with learned
edge potentials (+2stepMF-LearnedCRF). In general, we
observe that mean-field in learned CRF leads to slightly di-
lated classification regions in comparison to using Gaussian
CRF thereby filling-in the false negative pixels and also cor-
recting some mis-classified regions.

3.6. Material Segmentation

In Fig. 10, we present visual results comparing 2 step
mean-field inference with Gaussian and learned pairwise
CRF potentials. In general, we observe that the pixels be-
longing to dominant classes in the training data are being
more accurately classified with learned CRF. This leads to
a significant improvements in overall pixel accuracy. This
also results in a slight decrease of the accuracy from less
frequent class pixels thereby slightly reducing the average
class accuracy with learning. We attribute this to the type of



Given Image 0.05.(x,y) 0.01.(x,y) 0.05.(r,g,b) 0.01.(r,g,b) 0.05.(x,y,r,g,b) 0.01.(x,y,r,g,b)

Figure 5. Visualization of the Permutohedral Lattice. Sample lattice visualizations for different feature spaces. All pixels falling in the
same simplex cell are shown with the same color. (x, y) features correspond to image pixel positions, and (r, g, b) ∈ [0, 255] correspond
to the red, green and blue color values.

(a) Input (b) Gray Guidance (c) Ground Truth (d) Bicubic Interpolation (e) Gauss Bilateral (f) Learned Bilateral

Figure 6. Color Upsampling. Color 8× upsampling results using different methods (best viewed on screen).



(a) Input (b) Guidance (c) Ground Truth (d) Bicubic Interpolation (e) Gauss Bilateral (f) Learned Bilateral

Figure 7. Depth Upsampling. Depth 8× upsampling results using different upsampling strategies.

annotation that is available for this dataset, which is not for
the entire image but for some segments in the image. We
have very few images of the infrequent classes to combat
this behaviour during training.

3.7. Experiment Protocols

Table 5 shows experiment protocols of different experi-
ments.

References
[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. In Computer
Graphics Forum, volume 29, pages 753–762. Wiley Online
Library, 2010.

[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 33(5):898–916, May 2011.

[3] V. Aurich and J. Weule. Non-linear Gaussian filters perform-
ing edge preserving diffusion. In DAGM, pages 538–545.
Springer, 1995.

[4] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-
noising: Can plain neural networks compete with BM3D? In
Computer Vision and Pattern Recognition (CVPR), 2012.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected CRFs. In International
Conference on Learning Representations (ICLR), 2015.

[6] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In Computer
Vision and Pattern Recognition (CVPR), pages 3642–3649,
2012.

[7] M. Everingham, L. V. Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL VOC2012 challenge results.
2012.

[8] B. Graham. Spatially-sparse convolutional neural networks.
arXiv preprint arXiv:1409.6070, 2014.

[9] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In International
Conference on Computer Vision (ICCV), 2011.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of
the ACM International Conference on Multimedia, pages
675–678. ACM, 2014.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[12] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database
of handwritten digits, 1998.

[13] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black. SMPL: A skinned multi-person linear model. ACM
Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–
248:16, Oct. 2015.

[14] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
European Conference on Computer Vision (ECCV), pages
746–760. Springer, 2012.

[15] J. B. Tenenbaum. A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction.
http://isomap.stanford.edu/, 2000. [Online; accessed
12-October-2015].

[16] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduc-
tion. Science, 290(5500):2319–2323, 2000.

[17] H. Yagou, Y. Ohtake, and A. Belyaev. Mesh smoothing via
mean and median filtering applied to face normals. In Geo-
metric Modeling and Processing, 2002. Proceedings, pages
124–131. IEEE, 2002.



1
× 9
6
× 9
6

C
5+

M
P
4+

R
eL

U

10
× 2
3
× 2
3

C
6+

M
P
3+

R
eL

U

30× 6× 6

C
6+

T
an

H

120

IP
+
T
a
n
H

600

IP
+
T
an

H
+
S
o
ft
m
ax

183

(a) LeNet-7

1
× 9
6
× 9
6

C
3+

M
P
2+

R
eL

U

50
× 4
7
× 4
7

C
2
+
M
P
2+

R
eL

U

10
0
× 2
3
× 2
3

C
2
+
M
P
2+

R
eL

U

150× 11× 11

C
2+

M
P
2+

R
eL

U

200× 5× 5

C
2+

M
P
2
+
R
eL

U

250× 2× 2

C
2+

T
an

H

300

IP
+
T
an

H

350

IP
+
T
an

H
+
S
of
tm

ax

183

(b) DeepCNet

Figure 8. CNNs for Character Recognition. Schematic of (top) LeNet-7 [12] and (bottom) DeepCNet(5,50) [6, 8] architectures used in
Assamese character recognition experiments.



Background Aeroplane Bicycle Bird Boat Bottle Bus Car
Cat Chair Cow Dining Table Dog Horse Motorbike Person

Potted Plant Sheep Sofa Train TV monitor

(a) Input (b) Ground Truth (c) DeepLab (d) +2stepMF-GaussCRF (e) +2stepMF-LearnedCRF

Figure 9. Semantic Segmentation. Example results of semantic segmentation. (c) depicts the unary results before application of MF, (d)
after two steps of MF with Gaussian edge CRF potentials, (e) after two steps of MF with learned edge CRF potentials.



Brick Carpet Ceramic Fabric Foliage Food Glass Hair
Leather Metal Mirror Other Painted Paper Plastic Polished Stone

Skin Sky Stone Tile Wallpaper Water Wood

(a) Input (b) Ground Truth (c) DeepLab (d) +2stepMF-GaussCRF (e) +2stepMF-LearnedCRF

Figure 10. Material Segmentation. Example results of material segmentation. (c) depicts the unary results before application of MF, (d)
after two steps of MF with Gaussian edge CRF potentials, (e) after two steps of MF with learned edge CRF potentials.



Data Statistics Training Protocol

Experiment Feature Types Feature Scales
Filter
Size

Filter
Nbr. Train Val. Test Loss Type LR Batch Epochs

Single Bilateral Filter Applications
2× Color Upsampling Position1, Intensity (3D) 0.13, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
4× Color Upsampling Position1, Intensity (3D) 0.06, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
8× Color Upsampling Position1, Intensity (3D) 0.03, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
16× Color Upsampling Position1, Intensity (3D) 0.02, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
Depth Upsampling Position1, Color (5D) 0.05, 0.02 665 2 795 100 654 MSE 1e-07 50 251.6
Mesh Denoising Isomap (4D) 46.00 63 2 1000 200 500 MSE 100 10 100.0

DenseCRF Applications
Semantic Segmentation

- 1step MF
Position1, Color (5D);
Position1 (2D) 0.01, 0.34; 0.34 665; 19 2; 2 10581 1449 1456 Logistic 0.1 5 1.4

- 2step MF
Position1, Color (5D);
Position1 (2D) 0.01, 0.34; 0.34 665; 19 2; 2 10581 1449 1456 Logistic 0.1 5 1.4

- loose 2step MF
Position1, Color (5D);
Position1 (2D) 0.01, 0.34; 0.34 665; 19 2; 2 10581 1449 1456 Logistic 0.1 5 +1.9

Material Segmentation

- 1step MF Position2, Lab-Color (5D) 5.00, 0.05, 0.30 665 2 928 150 1798
Weighted
Logistic 1e-04 24 2.6

- 2step MF Position2, Lab-Color (5D) 5.00, 0.05, 0.30 665 2 928 150 1798
Weighted
Logistic 1e-04 12 +0.7

- loose 2step MF Position2, Lab-Color (5D) 5.00, 0.05, 0.30 665 2 928 150 1798
Weighted
Logistic 1e-04 12 +0.2

Neural Network Applications
Tiles: CNN-9×9 - - 81 4 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: CNN-13×13 - - 169 6 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: CNN-17×17 - - 289 8 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: CNN-21×21 - - 441 10 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: BNN Position1, Color (5D) 0.05, 0.04 63 1 10000 1000 1000 Logistic 0.01 100 30.0
LeNet - - 25 2 5490 1098 1647 Logistic 0.1 100 182.2
Crop-LeNet - - 25 2 5490 1098 1647 Logistic 0.1 100 182.2
BNN-LeNet Position2 (2D) 20.00 7 1 5490 1098 1647 Logistic 0.1 100 182.2
DeepCNet - - 9 1 5490 1098 1647 Logistic 0.1 100 182.2
Crop-DeepCNet - - 9 1 5490 1098 1647 Logistic 0.1 100 182.2
BNN-DeepCNet Position2 (2D) 40.00 7 1 5490 1098 1647 Logistic 0.1 100 182.2

Table 5. Experiment Protocols. Experiment protocols for the different experiments presented in this work. Feature Types: Feature
spaces used for the bilateral convolutions. Position1 corresponds to un-normalized pixel positions whereas Position2 corresponds to pixel
positions normalized to [0, 1] with respect to the given image. Feature Scales: Cross-validated scales for the features used. Filter Size:
Number of elements in the filter that is being learned. Filter Nbr.: Half-width of the filter. Train, Val. and Test corresponds to the number
of train, validation and test images used in the experiment. Loss Type: Type of loss used for back-propagation. “MSE” corresponds to
Euclidean mean squared error loss and “Logistic” corresponds to multinomial logistic loss. “Weighted Logistic” is the class-weighted
multinomial logistic loss. We weighted the loss with inverse class probability for material segmentation task due to the small availability
of training data with class imbalance. LR: Fixed learning rate used in stochastic gradient descent. Batch: Number of images used in one
parameter update step. Epochs: Number of training epochs. In all the experiments, we used fixed momentum of 0.9 and weight decay of
0.0005 for stochastic gradient descent. “‘Color Upsampling” experiments in this Table corresponds to those performed on Pascal VOC12
dataset images. For all experiments using Pascal VOC12 images, we use extended training segmentation dataset available from [9], and
used standard validation and test splits from the main dataset [7].


