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“Ohne Musik wäre das Leben ein Irrtum.”

Friedrich Wilhelm Nietzsche



SUMMARY

Robotic setups often need fine-tuned controller parameters both at low- and task-levels. Find-
ing an appropriate set of parameters through simplistic protocols, such as manual tuning or
grid search, can be highly time-consuming. This thesis proposes an automatic controller tun-
ing framework based on linear optimal control combined with Bayesian optimization. With
this framework, an initial set of controller gains is automatically improved according to the
performance observed in experiments on the physical plant.

In the tuning scenario that we propose, we assume we can measure the performance of the
control system in experiments through an appropriate cost. However, we only allow a limited
number of experimental evaluations (e.g. due to their intrinsic monetary cost or effort). The
goal is to globally explore a given range of controller parameters in an efficient way, and return
the best known controller at the end of this exploration.

At each iteration, a new controller is generated and tested on a closed-loop experiment in
the real plant. Then, the recorded data is used to evaluate the system performance using a
quadratic cost. We re-iterate in order to solve a global optimization problem, whose goal is to
learn most about the location of the global minimum from the limited number of experiments.

We use the Linear Quadratic Regulator (LQR) formulation as a standard way to compute
optimal multivariate controllers given a linear plant model and quadratic cost. We parametrize
the LQR weights in order to obtain controllers with appropriate robustness guarantees.

The underlying Bayesian optimization algorithm is Entropy Search (ES), which represents
the latent objective as a Gaussian process and constructs an explicit belief over the location of
the objective minimum. This method maximizes the information gain from each experimen-
tal evaluation. Thus, this framework shall yield improved controllers with fewer evaluations
compared to alternative approaches.

A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimen-
tal demonstrator. Results of a two-dimensional tuning problem are shown in two different
contexts: in the first setting, a wrong linear model is used to compute a nominal controller,
which destabilizes the actual plant. The automatic tuning framework is still able to find a sta-
bilizing controller after a few iterations. In the second setting, a fairly good linear model is used
to compute a nominal controller. Even then, the framework can still improve the initial perfor-
mance by about 30%. In addition, successful results on a four-dimensional tuning problem
indicate that the method can scale to higher dimensions.

Themain and novel contribution of this thesis is the development of an automatic controller
tuning framework combining ES with LQR tuning. Albeit ES has been tested on simulated
numerical optimization problems before, this work is the first to employ the algorithm for
controller tuning and apply it on a physical robot platform. Bayesian optimization has recently
gained a lot of interest in the research community as a principled way for global optimization
of noisy, black-box functions using probabilistic methods. Thus, this work is an important
contribution towardmaking thesemethods available for automatic controller tuning for robots.

In conclusion, we demonstrate in experiments on a complex robotic platform that Bayesian
optimization is useful for automatic controller tuning. Applying Gaussian process optimiza-
tion for controller tuning is an emerging novel area. The promising results of this work open
up many interesting research directions for the future.

In future work, we aim at scaling this framework further than this problem to higher di-
mensional systems such as balancing of a full humanoid robot for which a rough linear model
can be obtained. In addition, comparing ES with other global optimizers from the literature
may be of interest. Investigating safety considerations such as avoiding unstable controllers
during the search is also part of future research.
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Chapter 1. INTRODUCTION 1

Chapter 1

INTRODUCTION

In this chapter we present the goal and motivation for this thesis. In addition, we present its
scientific contributions and review the related literature.

Preliminary results of this approach [1] (paper) were recently shown in oral presentation
at the Second Machine Learning in Planning and Control of Robot Motion Workshop at IEEE Inter-
national Conference on Intelligent Robots and Systems (iROS). This thesis also shows further
discussions and extended results, which were submitted to the 2016 IEEE International Con-
ference on Robotics and Automation (ICRA) [2]. The contents of this thesis are an extension of
these two previous works.

1.1 Motivation

Robotic setups often need fine-tuned controller parameters both at low- and task-levels. Find-
ing an appropriate set of parameters through simplistic protocols, such as manual tuning or
grid search, can be highly time-consuming. We seek to automate the process of fine tuning a
nominal controller based on performance observed in experiments on the physical plant. We
aim for information-efficient approaches, where only few experiments are needed to obtain
improved performance.

Designing controllers for balancing systems such as in [3] or [4] are typical examples for
such a scenario. Often, one can without much effort obtain a rough linear model of the sys-
tem dynamics around an equilibrium configuration, for example, from first principles mod-
eling. Given the linear model, it is then relatively straightforward to compute a stabilizing
controller, for instance, using optimal control. When testing this nominal controller on the
physical plant, however, one may find the balancing performance unsatisfactory, e.g. due to
unmodeled dynamics, parametric uncertainties of the linear model, sensor noise, or imprecise
actuation. Thus, fine-tuning the controller gains in experiments on the real system is desirable
in order to partly mitigate these effects and obtain improved balancing performance.

http://www.cs.unm.edu/~afaust/MLPC15_proceedings/MLPC15_paper_Marco.pdf
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1.2 Goal and scientific contributions

We have a tuning scenario in mind, where a limited budget of experimental evaluations is
allowed (e.g. due to limited experimental time on the plant, or costly experiments). The au-
tomatic tuning shall globally explore a given range of controllers and return the best known
controller after a fixed number of experiments. During exploration, we assume that it is ac-
ceptable for the controller to fail, for example, because other safety mechanisms are in place
[5], or it is uncritical to stop an experiment when reaching safety limits (as is the case in exper-
iment considered herein).

For this scenario, we propose a controller tuning framework extending previous work [6].
Therein, a Linear Quadratic Regulator (LQR) is iteratively improved based on control perfor-
mance observed in experiments. The controller parameters of the LQR design are adjusted
using Simultaneous Perturbation Stochastic Approximation (SPSA) [7] as optimizer of the ex-
perimental cost. It obtains a very rough estimate of the cost function gradient from few cost
evaluations, and then updates the parameters in its negative direction. While control perfor-
mance could be improved in experiments on a balancing platform in [6], this approach does
not exploit the available data as much as could be done. Additionally, rather than exploring
the space globally, it only approximates locally the location of the minimum.

In contrast to [6], we propose the use of Entropy Search (ES) [8], a recent algorithm for global
Bayesian optimization, as the minimizer for the LQR tuning problem. ES employs a Gaussian
process (GP) as a non-parametric model capturing the knowledge about the unknown cost
function. At every iteration, the algorithm exploits all past data to infer the shape of the cost
function. Furthermore, in the spirit of an active learning algorithm, it suggests the next evalu-
ation such as to learn most about the location of the minimum. Thus, we expect ES to be more
data-efficient than simple gradient-based approaches as in [6]; that is, to yield better controllers
with fewer experiments.

Themain and novel contribution of this thesis is the development of an automatic controller
tuning framework combining ES [8] with LQR tuning [6]. Albeit ES has been tested on simu-
lated numerical optimization problems before, it had never been tried on a real setting, and
also never used for automatic controller tuning. Such recently developed algorithm is gaining
interest, as Bayesian optimization is emerging as an exciting subfield of machine learning, con-
cerned with the global optimization of noisy, black-box functions using probabilistic methods.

The effectiveness of the proposed auto-tuning method is demonstrated in experiments of
a humanoid robot balancing a pole (see Figure 1.1). We present successful auto-tuning exper-
iments for parameter spaces of different dimensions (2D and 4D), as well as for initialization
with relatively good, but also poor initial controllers.
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FIGURE 1.1: Robot Apollo balancing two inverted poles. These experimental
platforms are used as a demonstrators of the automatic tuning framework.

1.3 Related work

Automatic tuning of an LQR is also considered in [9–11], for example. In these references, the
tuning typically happens by first identifying model parameters from data, and then comput-
ing a controller from the updated model. In contrast, we tune the controller gain directly thus
bypassing the model identification step. Albeit we exploit a nominal model in the LQR de-
sign, this model is not updated during tuning and merely serves to pre-structure the controller
parameters.

Using Gaussian processes for controller tuning has recently been proposed in [12]. Therein,
the parameter space is explored by selecting next evaluation points of maximum uncertainty
(i.e. maximum variance of the GP). In contrast, ES uses a more sophisticated selection criterion
maximizing the expected information gain of a new experiment aiming at eventually finding
the global minimum, while the objective in [12] is on exploration only. A particular focus of
the method in [12] is on safe exploration, and a GP classifying safe and unsafe regions is learnt
alongside.

The task of learning a controller from experimental rewards (i.e. negative cost) is also con-
sidered in the rather large area of reinforcement learning (RL), see [13] for a survey. However,
the tools used here (GP-based optimization) differ from the classical methods in RL. In [14],
controller parameterization in terms of LQRweights is explored in the context of RL. While the
authors find this choice to be inefficient for solving a reaching task, we find LQR parametriza-
tion suitable for improving feedback controllers (similar to the results in [6]).

We use a robot balancing a pole as the experimental demonstrator for ourmethod. A similar
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example is used in [12], albeit in simulation only. Pole balancing problems are commonly used
as simulation or experimental examples also in other learning control approaches, see [15–19],
for example.

The LQR tuning problem is described in Sec. 2.1. The use of ES for automating the tuning
is outlined in Sec. 2.2. The experimental results are presented in Chapter 4, and concluding
remarks in Chapter 7. Supplementary information such as technical details about the robotic
platform can be found in Chapter 3. Additional information about the logistics of this work
can be found in Chapter 5 and Chapter 6.
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Chapter 2

AUTOMATIC LQR TUNING

This chapter is one of the core parts of the thesis. It is compounded by a complete description of
the proposed framework. The other core part is Chapter 4, which shows experimental results.
Sec. 2.1 addresses the LQR tuning problem, and Sec. 2.2 explains the use of ES as optimizer.

2.1 LQR tuning problem

In this section, we formulate the LQR tuning problem following the approach proposed in [6].
First, the considered control design problem is introduced in Sec. 2.1.1. Then, the parametriza-
tion of the controller is presented in Sec. 2.1.2, and ultimately the corresponding optimization
problem is stated in Sec. 2.1.3.

2.1.1 Control design problem

We consider a system that follows a discrete-time non-linear dynamic model

xk+1 = f(xk,uk,wk) (2.1)

with system states xk, control input uk, and zero-mean process noise wk at time instant k. We
assume that (2.1) has an equilibrium at xk = 0, uk = 0 andwk = 0, which we want to keep the
system at. We also assume that xk can be measured and, if not, an appropriate state estimator
is used.

For regulation problems such as balancing about an equilibrium, a linear model is often
sufficient for control design. Thus, we consider a scenario, where a linear model

x̃k+1 = Anx̃k +Bnuk +wk (2.2)

is given as an approximation of the dynamics (2.1) about the equilibrium at zero. We refer to
(2.2) as the nominal model, while (2.1) are the true system dynamics, which are unknown.



6 Gaussian Process Optimization for Self-Tuning Control

A common way to measure the performance of a control system is through a quadratic cost
function such as

J = lim
K→∞

1

K
E

[

K
∑

k=0

xT
kQxk + uT

kRuk

]

(2.3)

with positive-definite weighting matrices Q and R, and E [·] the expected value. The cost
(2.3) captures a trade-off between control performance (keeping xk small) and control effort
(keeping uk small), which we seek to achieve with the control design.

Ideally, we would like to obtain a state feedback controller for the non-linear plant (2.1) that
minimized (2.3). Yet, this non-linear control design problem is intractable in general. Instead,
a straightforward approach that yields a locally optimal solution is to compute the optimal
controller minimizing (2.3) for the nominal model (2.2). This controller is given by the well-
known Linear Quadratic Regulator (LQR) [20, Sec. 2.4]

uk = Fxk (2.4)

whose static gain matrix F can readily be computed by solving the discrete-time infinite-
horizon LQR problem for the nominal model (An,Bn) and the weights (Q,R). For simplicity,
we write

F = lqr(An,Bn,Q,R). (2.5)

If (2.2) perfectly captured the true system dynamics (2.1), then (2.5) would be the optimal
controller for the problem at hand. However, in practice, there can be several reasons why
the controller (2.5) is suboptimal: the true dynamics are non-linear, the nominal linear model
(2.2) involves parametric uncertainty, or the state is not perfectly measurable (e.g. noisy or in-
complete state measurements). While still adhering to the controller structure (2.4), it is thus
beneficial to fine tune the nominal design (the gain F ) based on experimental data to partly
compensate for these effects. This is the goal of the automatic tuning approach, which is de-
tailed next.

2.1.2 LQR tuning problem

Following the approach in [6], we parametrize the controller gains F in (2.4) as

F (θ) = lqr(An,Bn, Q̄(θ), R̄(θ)) (2.6)

where Q̄(θ) and R̄(θ) are design weights parametrized in θ ∈ R
D, which are to be varied in

the automatic tuning procedure. For instance, Q̄(θ) and R̄(θ) can be diagonal matrices with
θj > 0, j = 1, . . . ,D, as diagonal entries.

Parametrizing controllers in the LQR weights Q̄ and R̄ as in (2.6), instead of varying the
controller gains F directly, serves to discard destabilizing or otherwise undesirable controllers.
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It is a classical result of control theory [21]1 that any stabilizing feedback controller (2.4) that
yields a return difference greater one (in magnitude) can be obtained for some Q̄ and R̄ as the
solution to the LQR problem. The return difference is an important quantity in the analysis of
feedback loops [20], and its magnitude exceeding one means favorable robustness properties.
Therefore, parametrizing controllers in terms of the LQR design (2.6) does not discard any
controllers except those that are undesirable because they destabilize the nominal plant, or
have poor robustness properties. Of course, further parametrizing Q̄ and R̄ in θ (e.g. diagonal)
can possibly restrict the search space. However, such restrictions may be desirable to focus on
most relevant parameters or to ease the optimization problem.

When varying θ, different controller gains F (θ) are obtained. These will affect the system
performance through (2.4), thus resulting in a different cost value from (2.3) in each experiment.
To make the parameter dependence of (2.3) explicit, we write

J = J(θ). (2.7)

The goal of the automatic LQR tuning is to vary the parameters θ such as to minimize the
cost (2.3).

Remark: The weights (Q,R) in (2.3) are referred to as performance weights. Note that, while
the design weights

(

Q̄(θ), R̄(θ)
)

in (2.6) change during the tuning procedure, the performance
weights remain unchanged.

2.1.3 Optimization problem

The above LQR tuning problem is summarized as the optimization problem

argmin J(θ) s.t. θ ∈ D (2.8)

where we restrict the search of parameters to a bounded domain D ⊂ R
D. The domain D

typically represents a region around the nominal design, where performance improvements
are to be expected or exploration is considered to be safe.

The shape of the cost function in (2.8) is unknown. Neither gradient information is available
nor guarantees of convexity can be expected. Furthermore, (2.3) cannot be computed from
experimental data in practice as it represents an infinite-horizon problem. As is also done in
[6], we thus consider the approximate cost

Ĵ =
1

K

[

K
∑

k=0

xT
kQxk + uT

kRuk

]

(2.9)

1The result in [21] is stated for continuous-time systems with a single control variable (as is the case in the ex-
periments considered in Chapter 4). Similar results exist for discrete-time systems [22], and for multi-input systems
(see references in [23]).
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with a finite, yet long enough horizonK . The cost (2.9) can be considered a noisy evaluation of
(2.3). Such an evaluation is expensive as it involves conducting an experiment, which lasts few
minutes in the considered balancing application.

2.2 LQR tuning with Entropy Search

In this section, we introduce Entropy Search (ES) [8] as the optimizer to address problem (2.8).
The key characteristics of ES are explained in Sec. 2.2.1 to 2.2.3, the resulting framework for
automatic LQR tuning is summarized in Sec. 2.2.4, and Sec. 2.2.5 briefly discusses relatedmeth-
ods. Here, we present only the high-level ideas of ES from a practical standpoint. The reader
interested in the mathematical details, as well as further explanations, is referred to [8].

2.2.1 Underlying cost function as a Gaussian process

ES is one out of several popular formulations of Bayesian Optimization [24–26], a framework
for global optimization in which uncertainty over the objective function J is represented by a
probability measure p(J), typically a Gaussian process (GP) [27]. Note that the shape of the cost
function (2.3) is unknown; only noisy evaluations (2.9) are available. A GP can be understood
as a probability measure over a function space. Thus, the GP encodes the knowledge that we
have about the cost function. New evaluations are incorporated through conditioning the GP
on these data. With more data points, the cost function shape thus becomes better known. GP
regression is a commonway in machine learning for inferring an unknown function from noisy
evaluations; refer to [27] for more details.

We model prior knowledge about J as the GP

J(θ) ∼ GP (µ(θ), k(θ,θ∗)) (2.10)

with mean function µ(θ) and covariance function k(θ,θ∗). Common choices are a zero mean
function (µ(θ) = 0 for all θ), and the squared exponential (SE) covariance function

kSE(θ,θ∗) = σ2 exp

[

−
1

2
(θ − θ∗)

TS(θ − θ∗)

]

(2.11)

which we also use herein. The covariance function k(θ,θ∗) generally measures covariance
between J(θ) and J(θ∗). It can thus be used to encode assumptions about properties of J
such as smoothness, characteristic length-scales, and signal variance. In particular, the SE co-
variance function (2.11) models smooth functions with signal variance σ2 and length-scales
S = diag(λ1, λ2, . . . , λD), λj > 0.

We assume that the noisy evaluations (2.9) of (2.3) can be modeled as

Ĵ = J(θ) + ε (2.12)
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(a) 1 evaluation
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FIGURE 2.1: Evolution of an example Gaussian process for three successive function evaluations (orange dots),
reproduced with slight alterations from [8]. The posterior mean µ̄(θ) is shown in thick violet, two standard
deviations 2σ̄(θ) in thin violet, and the probability density as a gradient of color that decreases away from
the mean. Two standard deviations of the likelihood noise 2σn are represented as orange vertical bars at each
evaluation. Approximated probability distribution over the location of the minimum pmin(θ) in green. These
plots use arbitrary scales for each object. They were generated using [28].

where the independent identically distributed noise ε describes aGaussian likelihoodN (J(θ), σ2n).
To simplify notation, we write y = {Ĵ i}Ni=1 for N evaluations at locations Θ = {θi}Ni=1.

Conditioning the GP on the data {y,Θ} then yields another GP with posterior mean µ̄(θ) and
a posterior variance k̄(θ,θ∗).

Figure 2.1 provides an example for a one-dimensional cost function and three successive
function evaluations. As can be seen, the shape of the mean is adjusted to fit the data points,
and the uncertainty (standard deviation) is reduced around the evaluations. In regions where
no evaluations have been made, the uncertainty is still large. Thus, the GP provides a mean
approximation of the underlying cost function, as well as a description of the uncertainty asso-
ciated with this approximation.

We gather the hyperparameters of the GP in the set H = {λ1, λ2, . . . , λD, σ, σn}. An initial
choice of H can be improved with every new data point Ĵ i by adapting the hyperparameters.
As commonly done, the marginal likelihood is maximized with respect to H at each iteration
of ES.

Typically, the cost can have different sensitivity to different parameters θj ; that is, the cost
may change more significantly with some dimensions than with others. We use automatic
relevance determination [27, Sec. 5.1] in the covariance function (2.11), which removes those
dimensions with low influence on the cost as more data points become available.
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θ

J
(θ
)

FIGURE 2.2: The blue line represents the expected gain in information E [∆H ] (θ). The probability of
the location of the minimum pmin(θ) and the GP posterior over J(θ) from Fig. 2.1(c) are repeated for
reference. The grey line is used as a separator. These plots use arbitrary scales for each object. They
were generated using [28].

2.2.2 Probability measure over the location of the minimum

A key idea of ES (see [8, Sec. 1.1]) is to explicitly represent the probability pmin(θ) for the
minimum location over the domain D:

pmin(θ) ≡ p(θ = argmin J(θ)), θ ∈ D. (2.13)

The probability pmin(θ) is induced by the GP for J : given a distribution of cost functions J as
described by the GP, one can in principle compute the probability of any θ being the minimum
of J . For the example GPs in Fig. 2.1, pmin(θ) is shown in green.

To obtain a tractable algorithm, ES approximates pmin(θ) with finitely many points on a
non-uniform grid that puts higher resolution in regions of greater influence.

2.2.3 Information-efficient evaluation decision

The key feature of ES is the suggestion of new locations θ, where (2.9) should be evaluated
to learn most about the location of the global minimum. This is done by, first, computing the
current amount of information H about the minimum, second, approximating the expected
gain in information E [∆H] (θ) if we evaluated at a certain location θ, and third, suggesting as
next evaluation point the location where E [∆H] (θ) is maximal.
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Algorithm 1 Automatic LQR Tuning. As its inputs, ENTROPYSEARCH takes the type of covariance
function k, the likelihood l, a fixed number of evaluations N , and data points {Θ,y}. Alternative stop-
ping criteria instead of stopping afterN iterations can be used.

1: initialize θ0; typically Q̄(θ0) = Q, R̄(θ0) = R

2: Ĵ0 ← COSTEVALUATION(θ0) ⊲ Cost evaluation
3: {Θ,y} ← {θ0, Ĵ0}
4: procedure ENTROPYSEARCH(k,l,N ,{Θ,y})
5: for i = 1 to N do
6: [µ̄, k̄]← GP(k, l, {Θ,y}) ⊲ GP posterior
7: pmin ← approx(µ̄, k̄) ⊲ Approximate pmin
8: θi ← argmax∆H ⊲Next location to evaluate at
9: Ĵ i ← COSTEVALUATION(θi) ⊲ Cost evaluation

10: {Θ,y} ← {Θ,y} ∪ {θi, Ĵ i}
11: θBG ← argmax pmin ⊲ Update current “Best Guess”
12: end for
13: return θBG

14: end procedure

15: function COSTEVALUATION(θ)
16: LQR design: F̄ ← lqr(An,Bn, Q̄(θ), R̄(θ))
17: update control law (2.4) with F = F̄

18: perform experiment and record {xk}, {uk}

19: Evaluate cost: Ĵ ← 1

K

[

∑K

k=0
xT

k
Qxk + uT

k
Ruk

]

20: return Ĵ
21: end function

The current amount of information about the location of the global minimum is computed
with the relative entropy

H =

∫

D

pmin(θ) log
pmin(θ)

b(θ)
dθ (2.14)

between pmin(θ) and the uniform distribution b(θ) over the bounded domain D. The rationale
for this is that the uniform distribution essentially has no information about the location of the
minimum, while a very “peaked” distribution would be desirable to obtain distinct potential
minima. In fact, H diverges toward plus infinity as pmin approaches to a Dirac point distribu-
tion.

Relying on (2.14), ES approximates the expected gain in information E [∆H] (θ) if we se-
lected a certain location θ as next evaluation point. In Fig. 2.2 we show E [∆H] (θ), computed
for the GP posterior of Fig. 2.1(c). ES would select as next evaluation point the location where
the blue line reaches its maximum.

In addition to suggesting the next evaluation, ES also outputs its current best guess of the
minimum location; that is, the maximum of its approximation to pmin(θ).
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2.2.4 Automatic LQR tuning

The proposed method for automatic LQR tuning is obtained by combining the LQR tuning
framework from Section 2.1 with ES; that is, using ES to solve (2.8). At every iteration, ES
suggests a new controller (through θwith (2.6)), which is then tested in an experiment to obtain
a new cost evaluation (2.9). Through this iterative procedure, the framework is expected to
explore relevant regions of the cost (2.3), infer the shape of the cost function, and eventually
yield the global minimum within D. The automatic LQR tuning method is summarized in
Algorithm 1.

The performanceweights (Q,R) encode the desired performance for the system (2.1). Thus,
a reasonable initial choice of the parameters θ is such that the design weights

(

Q̄(θ), R̄(θ)
)

equal (Q,R). The obtained initial gain F would be optimal if (2.2) were the true dynamics.
After N evaluations, ES is expected to improve this initial gain based on experimental data
representing the true dynamics (2.1).

2.2.5 Relation to other GP-based optimizers

Similar to ES, there exist a number of GP-based optimization algorithms, which infer the objec-
tive function from evaluations to search for the function’s optimum. However, these methods
do not have an explicit notion of the function’s extremum as in (2.13). Typically, they aim to
collect low function values, rather than maximizing information gain.

GP optimization methods like probability of improvement (PI) [25] or expected improvement (EI)
[24] also construct a GP posterior from function evaluations in the same way as ES. Instead of
maximizing information gain about the minimum location, however, they maximize heuristic
utility functions that are designed to have high values close to the function’s minimum. In
contrast to pmin, which is a global measure, these utilities represent local quantities. This leads
PI and EI to typically evaluate in regions of low function values, while ES might evaluate in
high cost regions if this leads to learningmost about the location of the minimum.

Another type of algorithms treat optimization in the continuous bandit setting, like [29]
relying on Gaussian process upper confidence bound (GP-UCB) [30]. In the bandit setting, the goal
is to minimize regret; that is, the sum of function values at each iteration. Similar to EI and PI,
this typically leads to evaluations in a local region of the expected minimum location to avoid
incurring high costs, while ES is able to explore globally, disregarding the function value itself.

The bottom line is that ES is designed for problems where, after a finite number of experi-
ments, the best guess for the minimum is to be made. This corresponds to the controller tuning
scenario discussed in the introduction. Instead, algorithms like EI, PI and GP-UCB, combined
with the continuous bandit setting, aim to collect a sequence of low function values, which may
be relevant in other tuning scenarios where performance during exploration matters. Numer-
ical experiments in [8] demonstrate that ES outperforms these three methods in the sense of
obtaining better guesses for the true minimum with fewer evaluations.
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Chapter 3

ROBOTIC PLATFORM

This chapter merely summarizes representative aspects of the hardware (Sec. 3.1) and soft-
ware (Sec. 3.2) that conform the robotic platform used as experimental demonstrator for test-
ing the proposed framework. In addition, Sec. 3.3 briefly describes the underlying low-level
controllers structures, which were critical for achieving and improving the pole balancing, and
thus, reaching the goals of this thesis. However, readers not very interested in technical details
about the robotic platform, but more in understanding the core parts of this thesis (Chapter 2
and Chapter 4) can safely skip this part.

3.1 Hardware

This section briefly explains the four pillars of the robotic platform: the robot, the pole, the
motion tracking system, and the real-time workstation.

Robot Apollo

The robot Apollo consists of two humanoid arms, to which two robotic hands are mounted as
end-effectors, and a SARCOS head.

Each humanoid arm is a seven degree-of-freedom (DOF) robot arm LBR4+ from KUKA
Laboratories (see Fig. 3.1 (a)).

A BH8-series BarrettHand is mounted as end-effector on each arm. One of the end-effectors
is used to hold the handle of the pole (see Fig. 3.1 (b)).

Inverted pole

FIGURE 3.2: Short and long poles used on
the balancing experiments.

The pole used on the balancing problem consists of a
stick linked to a handle through a rotatory joint with one
DOF, as can be seen in Fig. 3.2. The red ball on the top is
used to increase its inertia. Several visual markers (grey
balls) are attached to it to allow motion tracking. A de-
tailed sketch of the design of the pole can be found in
Appendix A.
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(a) Robot arm (b) Robot hand

FIGURE 3.1: In (a) is shown a computer-aided design (CAD) model of a LBR4+ Kuka arm,
with a BarretHand mounted as end-effector. In black, KUKA naming scheme. In red, Sim-
ulation Laboratory (SL) naming scheme [31]. In (b) is shown a detail of the end-effector
holding the inverted pole.

VICON System

The motion tracking is achieved with four VICON cameras distributed around the robot. These
cameras are connected to a workstation that provides for real-time position and orientation
measurements. These data are passed trough a real-time safe communication bridge to the
Real-time workstation.

Real-time workstation

The robot is controlled from a 8-cores 3.5GHz workstation under Ubuntu 12.04 extended by
Xenomai to guarantee real-time constraints. The data from the motion tracking system and the
readings from the joint encoders of the are sent to this machine, which accordingly generates
and sends torque signals to the robot.

3.2 Software

Simulation Library (SL)

The actual communication is realized by Simulation Laboratory (SL), a soft-ware package for
simulation and real-time robot communication and control, written by Stefan Schaal [32]. SL
consists of different processes, running in parallel, performing various tasks. Running with
1 kHz on Apollo, the motor servo receives and filters measurements from the joint angle



Chapter 3. ROBOTIC PLATFORM 15

encoders, numerically derives angular velocities and accelerations, and sends torques to the
joints. The measurements are passed to the task servo, possibly running at 1 kHz, too. Based
on the current joint states measured by the motor servo, the task servo computes new desired
joint states. Additionally, SL offers the possibility to run the same configuration on the simula-
tion servo, instead of on the real robot. Featuring a precise model of Apollo’s dynamics and a
powerful visualization tool, user tasks can easily be tested in simulation first [31].

Motion tracking program

The angular position of the pole is computed, with respect to a fixed coordinate frame, by
processing the data from the commercial VICON software. This measured angle is then sent to
SL through a real-time communication bridge, programmed using ROS.

Entropy Search

Entropy Search, used to solve the optimization problem, runs in MATLAB, and is publicly
available [8].

3.3 Low-level control of the robot arm

For the pole balancing problem, we assume we can control the pole by commanding end-
effector accelerations u(t). In reality, these end-effector accelerations are realized through an
appropriate tracking controller for the end effector. For this tracking controller, we follow a
similar control structure as the one proposed in [33] except for the force feedback control loop,
which is not needed here.

The desired torques τl for each joint l = {1, . . . , 7} are computed as the combination of a
feedback plus a feedforward term:

τl(t) = τ ffl (t) + τ fbl (t)

Feedback term

The feedback term τ fbl is obtained by applying PD position control on the joint space and PID
position control at the end-effector space, i.e. the cartesian space. We briefly describe next each
one of these two control strategies.

The position control at each joint is achieved as

τ
fb,1
l (t) = Pl(ϑ

des
l (t)− ϑcurl (t)) +Dl(ϑ̇

des
l (t)− ϑ̇curl (t))
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where Pl and Dl represent the proportional and derivative gains of each joint l, ϑdesl (t) repre-
sents the desired joint angle and ϑcurl (t) represents the current joint angle, measured by the joint
encoders. The corresponding derivatives are also measured using the joint encoders.

This layer of control by itself ensures certain level of position control at the end-effector. In
fact, fairly good tracking can be achieved in manipulation tasks, for which only slow move-
ments of the end-effector are required.

Certainly, raising up the gain Pl can increase the end-effector positioning precision, but at
expenses of having a stiff arm. The stiffer the arm, the higher is the risk of the motors getting
broken if the arm hits a rigid obstacle.

In addition, increasingDl might damp the tracking of the end-effector. However, noisy sen-
sor measurements limit howmuch this gain can be increased, i.e., howmuch the measurement
noise gets amplified.

Increasing the accuracy of the end-effector tracking, while preserving low PD gains (i.e.,
high compliance) on the robot joints, is nonetheless possible. In the approach described in
[33], a cartesian feedback control loop is implemented in top of the typical position control
layer, described above. The cartesian position error is directly mapped into the joint torques as
shown below:

τ
fb,2
l (t) = jTl (t)

(

P
(

rdes(t)− rcur(t)
)

+D
(

ṙdes(t)− ṙcur(t)
)

+ I

∫

(

rdes(t)− rcur(t)
)

dt
)

where jTl represents the row l of the transpose jacobian at time t. Proportional, derivative
and integral matrix gains are represented by P , D and I respectively. Finally, rdes(t) ∈ R

3

represents the desired position in the cartesian space, and rcur ∈ R
3 represents the current

position, obtained the forward kinematics.
The whole feedback term is computed as the superposition of these two control layers

τ fbl (t) = τ
fb,1
l (t) + τ

fb,2
l (t).

Although the pole balancing was already achieved only with the first layer of control, we
believe that applying the second layer has been a critical part for achieving the goals of this
thesis.

Feedforward term

The feedforward term τ ffl (t) accounts for the gravity compensation and the inverse dynamics
of the robot arm. An approximate non-linear model of the robot arm is used for computing it.
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Chapter 4

EXPERIMENTAL RESULTS

In this chapter, we present auto-tuning experiments for the pole balancing problem shown in
Fig. 1.1 that serve to demonstrate the automatic controller tuning framework on a complex
robotic platform. The system is described in Sec. 4.1, the implementation choices are presented
in Sec. 4.2, and the results are discussed in Sec. 4.3 and Sec. 4.4.

4.1 System description

We consider a one-dimensional balancing problem: a pole linked to a handle through a rotatory
joint with one degree of freedom (DOF) is kept upright by controlling the acceleration of the
end-effector of a humanoid arm. Figure 1.1 shows the set-up for two poles of different length.

The angle of the pole is tracked using an external motion capture system. We assume we
can control the pole balancing by commanding end-effector accelerations u(t) (see Chapter 3
for more information about the hardware and software).

The continuous-time dynamics of the balancing problem (similar to [34]) are described by:

mr2ψ̈(t)−mgr sinψ(t) +mr cosψ(t)u(t) + ξψ̇(t) = 0

s̈(t) = u(t) (4.1)

where ψ(t) is the pole angle with respect to the gravity axis, s(t) is the deviation of the end-
effector from the zero position, and u(t) is the end-effector acceleration.

Two poles with different lengths are used in the experiments. The center of mass of the
short pole lies at r ≃ 0.33 m from the axis of the rotatory joint, its mass is m ≃ 0.27 kg, the
friction coefficient is ξ ≃ 0.012 Nms, and the gravity constant is g = 9.81 m/s2. For the long
pole, we have r ≃ 0.64 m andm ≃ 0.29 kg.

Amodel (2.2) of the system is obtained by linearization of (4.1) about the equilibrium ψ = 0,
s = 0 and discretization with a sampling time of Ts = 1 ms. Using the parameters of the short
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pole, we obtain its nominal model 4.2.

An =













1.0 .001 0 0

.029 .99 0 0

0 0 1.0 .001

0 0 0 1.00













,Bn =













0

−.003

0

.001













(4.2)

The non-linear model (4.1) assumes that we can command a discretized end-effector accel-
eration uk as control input to the system.

The estimated end-effector position sk and velocity ṡk are computed at a sampling rate
of 1kHz from the robot’s joint encoders using forward kinematics. The pole orientation is
captured at 200 Hz by the motion capture system. From these data, we obtain estimates of pole
angle ψk and angular velocity ψ̇k through numerical differentiation and low-pass filtering (2nd-
order Butterworth, 10 Hz cutoff). With this scheme, no model is required to obtain estimates of
all states (in contrast to the Kalman filter used in [1]), and it can be used irrespective of which
balancing pole is used. The complete state vector of (2.2) is given by xk = [ψk, ψ̇k, sk, ṡk]

T.
To compensate for any steady-state error in the end-effector position, we augment the LQR

controller by integral action on sk. That is, we implement the control law uk = Fxk + Fzzk

instead of (2.4), where zk is the integrator state and the gain Fz = −0.3 is fixed. The gain F is
obtained by the LQR tuning as previously described. Since the integrator state is an artificial
state, it is not included in the computation of the experimental cost (2.9).

4.2 Automatic LQR tuning: Implementation choices

We choose the performance weights to be

Q = diag(1, 100, 10, 200), R = 10 (4.3)

where diag(·) denotes the diagonal matrix with the arguments on the diagonal. We desire to
have a quiet overall motion in the system. Therefore, we penalize the velocities ψ̇k and ṡk more
than the position states.

We conducted two types of tuning experiments, one with two parameters and another one
with four. The corresponding design weights are

• 2D tuning experiments:

Q̄(θ) = diag(1, 50θ1, 10, 50θ2), R̄(θ) = 10 (4.4)

where the parameters θ = [θ1, θ2] can vary in [0.01, 10], and θ0 = [2, 4] is chosen as initial
value.
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• 4D tuning experiments:

Q̄(θ) = diag(θ1, 25θ2, 10θ3, 25θ4), R̄(θ) = 10 (4.5)

with θ = [θ1, θ2, θ3, θ4], θj ∈ [0.01, 10], and θ0 = [1, 4, 1, 8].

In both cases, the initial choice θ0 is such that the design weights equal the performance
weights. That is, the first controller tested corresponds to the nominal LQR design (2.5).

Balancing experiments were run for 2 minutes, i.e. a discrete time horizon of K = 1.2 · 105

steps. Because the nominal model does not capture the true dynamics, some LQR controller
obtained during the tuning procedure may destabilize the system. This means that the system
exceeded either acceleration bounds or safety constraints on the end-effector position. In these
cases, the experimentwas stopped and a fixed heuristic cost Ju was assigned to the experiment.
Values for Ju are typically chosen slightly larger than the performance of a stable but poor
controller. We used Ju = 3.0 and Ju = 5.0 for the 2D and 4D experiments, respectively.

Before running ES, a few experiments were done to acquire knowledge about the hyperpa-
rametersH. Accordingly, a Gamma prior distribution was assumed over each hyperparameter
with expected values and variances gathered in Table 4.1. For the first iteration of ES, we use
these expectations as initial setH. After each iteration,H is updated as the result of maximizing
the GP marginal likelihood.

4.3 Results from 2D experiments

For the 2D experiments (4.4), we first use a short pole (Fig. 1.1, right) and the best available
linear model , showing that the framework is able to improve the initial controller. Secondly, we
exchange the pole with one of double length (Fig. 1.1, left), but keep the same nominal model .
We show, for the latter case, that even with a 50% underestimated model, the framework finds
a stable controller with good performance. In both cases, we use the design weights (4.4).

TABLE 4.1: Characterization of the gamma prior overH

2D exploration 4D exploration
E [·] Std [·] E [·] Std [·]

Lengthscale λj 2.5 0.11 2.00 0.63
Signal variance σ 0.2 0.02 0.75 0.075

Likelihood noise σn 0.033 0.0033 0.033 0.010
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(a) ES initialization (b) GP posterior after 20 iterations

FIGURE 4.1: GPs at (a) the start and (b) the end of the first tuning experiment. The GP mean is represented in
violet and ± two standard deviations in grey. The red dot corresponds to the initial controller, computed at
location θ

0 = [2, 4]. The green dot represents the current best guess for the location of the minimum. The blue
dot is the location suggested by ES to evaluate next, and orange dots represent other evaluations. The best
guess found after 20 iterations (green dot in (b)) has significantly lower cost than the initial controller (red
dot).

4.3.1 Using an accurate nominal model

ES was initialized with five evaluations, i.e. the initial controller θ0, and evaluations at the four
corners of the domain [0.01, 10]2. Figure 4.1 (a) shows the 2D Gaussian process including the
five initial data points. The algorithm can also work without these initial evaluations; however,
we found that they provide useful prestructuring of the GP and tend to speed up the learning.
This way, the algorithm focuses on interesting regions more quickly.

Executing Algorithm 1 for 20 iterations (i.e. 20 balancing experiments) resulted in the pos-
terior GP shown in Figure 4.1 (b). The “best guess” θBG = [0.01, 2.80] (green dot) is what ES
suggests to be the location of the minimum of the underlying cost (2.3).

In order to evaluate the result of the automatic LQR tuning, we computed the cost of the
resulting controller (best guess after 20 iterations) in five separate balancing experiments. The
average and standard deviation of these experiments are shown in Table 4.2 (left, bottom),
togetherwith the average and standard deviation of the initial controller, computed in the same
way before starting the exploration (left, top). Even though the initial controller was obtained
from the best linear model we had, the performance was still improved by 31.9%.

The direction of change of the parameters suggests that a less aggressive penalization in the
pole angular velocity was necessary to calm down the motion of the balancing. This apparent
contradiction could be explained following the next reasoning: first, the lower are the penaliza-
tion in the LQR weights, the lower are the resulting LQR gains, in general. Second, any noise
in the states signals will be amplified by their corresponding LQR gains, and transmitted to
the control input uk, i.e., the commanded end-effector accelerations, following (2.4). A noisy
control input uk will make the balancing shaky, providing a poorer performance and a higher
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(a) GP posterior after 20 evaluations (b) Cost function in simulation

FIGURE 4.2: In (a) is shown the final GP posterior for the second tuning experiment using a wrong nominal
model. The color scheme is the same as in Fig. 4.1. In (b) can be seen the theoretical cost function reproduced
in simulation assuming a linear plant and artificial noise

cost. Therefore, lowering the LQR gains (i.e., lowering the LQR weights) might be beneficial
for the case we have noisy measurements, like is the case of the pole angular velocity.

4.3.2 Using a wrong nominal model

In this experiment, we take the same nominal model as in the previous case, but we use a
longer pole in the experimental demonstrator (Fig. 1.1, left). The initial controller, computed
with θ0, destabilizes the system, which can be explained by the nominal model significantly
misrepresenting the true dynamics. As shown in Figure 4.2, after 20 iterations, ES suggested
θBG = [3.25, 0.01] as the best controller. The results of evaluating this controller five times, in
comparison to the initial controller, are shown in Table 4.2 (middle columns).

The posterior GPs of both experiments (Fig. 4.1(b) and Fig. 4.2(a)) shows that the entire
parameter region is explored, which is a distinguishing feature of ES (cf. Sec. 2.2.5).

The resulting set of parameters implies a smaller penalization of the end-effector velocity,
which suggests a less aggressive damping as the right direction for stabilizing the long pole.
Since the LQR gains use the model of the short pole (which requires higher damping to be

TABLE 4.2: Cost values for three tuning experiments

2D exploration 4D exploration
Ĵ (Best model) Ĵ (Under. model) Ĵ (Under. model)
mean std mean std mean std

θ0 1.12 0.11 3.00 - 5.00 -
θBG 0.76 0.058 0.058 0.012 0.040 0.0031
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balanced) the direction of the parameters shows how the framework, by tuning gains, auto-
matically stabilizes the system, skipping any additional system identification step.

A comparison with a theoretical cost function is also shown in Figure 4.2 (b). The balancing
system with the long pole was simulated following a linear plant, computed using its physical
parameters. Measurement noise is sampled from a Gaussian distribution with zero mean and
standard deviation previously computed from the motion tracking system. The same nominal
model used in the corresponding experiment (i.e., the model of the short pole) is used to com-
pute the LQR controllers at each location through (2.6). This analysis shows that unmodeled
nonlinearities of the real plant are reflected in the cost function during the exploration, making
it look significantly different from the simulated one. This reinforces the use of a global opti-
mizer, even in a low-dimensional space (2D), for solving such a non-convex problem, rather
than a local optimizer. In addition, it indicates that further system identification steps for im-
proving the linear model may not help to improve the balancing performance. This difference
might show up more remarkably in higher dimensional problems, e.g., the balancing of a hu-
manoid robot.

Video demonstration

The results presented in Sec. 4.3.2 are also shown in a video demonstration, attached as com-
plementary material to this thesis. It can also be visualized on-line following this link.

4.4 Results from 4D experiments

The 4D tuning experiments, realized with the long pole, uses the same nominal model as in
the previous experiments (i.e., a wrong linear model for the real plant), and the design weights
(4.5). We show that the framework is able to improve the controller found during the 2D ex-
periments with the long pole, in a higher dimensional space.

The first controller θ0 destabilizes the system. After 46 iterations, ES suggests θBG =

[4.21, 7.47, 0.43, 0.01], which in comparison with the 2D experiments with the long pole, per-
forms about a 31.7% better (see Table 4.2). We actually ran this experiment until iteration 50,
however, the algorithm did not lead to further improvements.

Figure 4.3 shows the cost function evaluations over the course of the tuning experiment.
The fact that unstable controllers are obtained throughout the experiment reflects how the
global search tends to cover all areas.

Before starting the auto-tuning in 2D experiments, we spent some effort selecting themethod’s
parameters, such as hyperparameters and parameter ranges. In contrast, we started the 4D ex-
periments without such prior tuning. In particular, we kept the same performance weights,
chose similar design weights, and started with the same values for the hyperparametersH and

https://drive.google.com/open?id=0BwrdL8sw7A-tVU9wNEwzelBLOXM
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FIGURE 4.3: Cost values obtained at each experiment differentiating stable controllers (blue dots), and unsta-
ble controllers (red dots).

penalty Ju. However, slight adaptations of these parameters were found necessary in response
to issues encountered. We briefly describe these next.

We chose initially a penalization for unstable controllers Ju = 3.0. After a few runs of
the auto-tuning, we found a stable controller (with poor performance), which yielded a cost
around 3.5. Since a stable controller should not be penalized more than an unstable one, we
stopped the tuning, selected Ju = 5.0, and restarted the experiment. Furthermore, we realized
after a few iterations of ES that hyperparameters were not changing significantly in response
to the obtained data. Therefore, after about 10 iterations we decided to stop the tuning and
changed, in particular, the gamma prior variances to those gathered in Table 4.1.

In general, any method reasoning about functions on continuous domains from a finite
number of data points relies on prior assumptions (see [8, Sec. 1.1] for a discussion). We were
quite pleased with the outcome of the tuning experiments and, in particular, that not much
had to be changed moving from the 2D to 4D experiment. Nonetheless, developing general
rules for choosing the parameters of GP-based optimizers like ES (maybe specific for certain
problems) seems important for future developments.
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Chapter 5

SCHEDULES AND COSTS

This chapter gathers supplementary information related to logistical aspects about the develop-
ment of this thesis. We summarize the planned scientific method followed for its development
and the amount of resources involved. Without entering in many technical details, we pretend
to reflect the importance of decision making to accomplish such work in a limited amount of
time.

5.1 Initial plan, real path and mismatches

This section describes the initially proposed plan, the problems encountered during the execu-
tion of this, and the eventually followed path. In spite of the mismatch between the initial and
final plans, we show that the final goal of this thesis was nevertheless reached. Furthermore,
extra results out of the initial scope of this work, were achieved.

5.1.1 Initial plan

Thesis proposal

This work was publicly announced from beginning of 2014, in the webpage of the Institute
for Dynamic Systems and Control at ETH Zürich (idsc.ethz.ch) under the title Gaussian Process

Optimization for Self-Tuning Control.

Initial time schedule

The initially planned duration for this work was about six months, from end of January 2015
till end of July 2015, working about 40 hours per week.

Original goal

The original goal was to employ ES for automatic tuning controllers using the LQR formu-
lation (see Chapter 2 for a detailed description) using Apollo balancing an inverted pole as
experimental demonstrator. In case the investigation was successful, it was proposed to record
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a video demonstration showing the effectiveness of the framework by parametrizing in 2 di-
mensions, using the aforementioned robotic platform. The video had to show the framework
dealing with a case in which only a wrong linearized model of the plant was available. The
motivation for this idea to work in reality was supported by previous research done S. Trimpe
and others on 2014.

Precedent status

Right before starting this work, the robot Apollo was programmed to balance a Furuta pen-
dulum [35, 36], which implies a different setting than the one considered in this thesis. While
in this balancing problem they only allow rotation in one of the joints of the robot arm, we
consider the movement of the end-effector onto a line, for which all the joints are involved.

FIGURE 5.1: Original pole. Pic-
ture extracted from [31]

Visual feedback was obtained using an ASUS Xtion PRO
LIVE device mounted on Apollo’s head. It measured an RGB
image and a depth cloud at a rate of 30 Hz with the purpose
of estimating the pole tilting on real-time through a vision al-
gorithm. This was done by, first identifying the centres of each
ball with respect to the coordinate frame of the camera, and then
computing the rotation angle of the pole assuming that it is bal-
anced within a plane (see Fig. 5.1).

An LQR controller (implemented in SL) was used to map the
measured pole and end-effector states into the desired accelera-
tions of the actuated joint. These accelerations were commanded
to the robot at a rate of 1 kHz in the closed-loop experiments.

This previous work was carried out by another master stu-
dent. The goal of his thesis [31] was to balance the pole during
an undefined amount of time, using the aforementioned setup.
However, several non-solved issues avoided him reaching this
goal. Instead, only balancing experiments about 6-7 seconds were achieved at maximum.

In general, using a depth cloud and RGB image to balance an inverted pole with a hu-
manoid arm is not a trivial problem. It has never been solved before, but only close approaches
like [34], that use stereo vision for obtaining measurements with higher acquisition rate (60
Hz), and a lower signal to noise ratio (SNR).

Originally, the goal of my thesis assumed the aforementioned set-up to be an experimental
demonstrator working out-of-the-box for testing a theoretical approach. However, this was not
the case. Therefore, it was a necessary condition to solve the pole-balancing problem on Apollo
before starting to work on the actual thesis.
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Sources of error

We identified four (possibly coupled) sources of errors. We summarize them next:

• The assumption of the pole moving in a plane might be too strong for the Fututa pen-
dulum configuration (which assumes arc movements at the end-effector). Thus, we pro-
posed to balance the pole in a vertical plane, i.e., by constraining the movement of the
end-effector onto a line.

• Neither the tracking of the end-effector position (i.e., howwell the end-effector tracks the
commanded trajectory) nor of the joint positions and velocities are accurate enough for
the bandwidth of frequencies involved in the balancing.

• The measurement noise of the ASUS device might be too high for such a task even after
a filtering stage that has to deal gently with the induced measurement delays.

• The delay of the ASUS device itself (around 60ms [31]) plus de computational effort of
the vision program (around 30ms [31]) might be too high for such control problem.

Planed steps

The original plan is divided in two parts: first, solve the issues related to the balancing; second,
apply ES to automatically improve an LQR controller.

Steps for solving the issues related to the balancing (to be solved in about three months):

1. State-of-the-art: understand and implement in simulation the algorithm proposed in [6].
Read previous work about cart-pole balancing problems [34–38]. Read, understand and
use Entropy Search [8] on a toy-example inMATLAB. Read [27] to understand better how
non-parametric non-linear regression with Gaussian Process works, both from a theoret-
ical and from a practical point of view.

2. Get familiar with SL, through a series of initial examples in simulation, as training for
working with the real robot.

3. Implement an LQR controller for cart-pole balancing in SL, in simulation, and test it on
the real robot.

4. Implement a Kalman Filter (KF) in SL, in simulation, that estimates the pole angular
position and velocities when measurements are not available. Since the pole angular
position is delayed (about 90ms), a state prediction stage helps to have an estimate of the
state at the current time relying on a linearized model of the system.

5. Double-check with MATLAB the previous results by implementing a KF with prediction
stage using the simulated data of the states and control input.
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6. Identify a linearized model of the pole through standard system identification techniques.

7. Test the implemented KF with the identified model of the pole on the real robot. If the
balancing works, then the major problem was the ASUS device’s delay. If not, continue.

8. Improve the tracking of the end-effector and joints positions of the robotic arm by com-
manding steps and sinusoidal trajectories1.

9. Test the balancing again on the real robot. If the balancing works, then the major problem
was the end-effector tracking.

Steps to test the automatic tuning framework using ES as optimizer (to be started after steps 1
to 9, and completed in about three months):

10. Run ES in MATLAB for a toy example: locate the global minimum of a parabola function
in one dimension trough evaluations corrupted by noise. Understand more in deep how
ES and the Gaussian Process regression works for a one dimensional case.

11. Simulate the cart-pole balancing problem in MATLAB with process noise and measure-
ment noise and integrate it with ES.

12. Integrate ES with Apollo balancing a pole in SL, in simulation.

13. Run an ES exploration parametrizing in two dimensions.

14. Record a video demonstration.

15. Write this thesis.

5.1.2 Followed plan:

Solving the initial problems

After following the steps from 1 to 9, the balancing was still unsatisfactory. Further efforts, like
increasing the acquisition rate of the ASUS device to 60 Hz, at the expense of frames with half
the resolution, were still unsatisfactory. One of the main reasons is that frames with half the
resolution imply higher SNR at the pole angle measurement.

In order to decouple possible sources of error, we exchanged the ASUS device by a motion
tracking system (VICON) to estimate the pole angular position with higher precision. With
such a ground truth at the vision part of the problem, potential inaccuracies at the end-effector
tracking would show up.

1This is a time-consuming trial-and-error process that requires increasing the PD gains of each joint individually
and compare the desired signal with the actual signal aiming at reducing the error between them. However, it is
desirable to maintain the robot with a certain level of compliance. Low compliance (i.e., high stiffness) can improve
tracking, but also involves some risks: if the robot hits an static object the motors might break.
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After adjusting the KF parameters and the LQR gains, the pole was balancing for an unde-
fined amount of time.

Still, the tracking of the end-effector could be improved. For this, we referred to the litera-
ture, where [33] implemented a cartesian feedback control loop, in top of the typical position
control layer, for manipulation tasks. This solution made the increased significantly the accu-
racy of the end-effector tracking, while high compliance on the robot joints was preserved (see
Sec. 3.3 for a detailed explanation).

The aforementioned solutions were run in parallel with steps 10 and 11. In total, around
10 weeks were necessary to achieve the pole balancing, and around 5 weeks more to improve
the end-effector tracking and polish low-level controllers. This left 9 weeks for accomplishing
steps 12 to 14. Nonetheless, some intermediate steps (not planned at the beginning of this
work) turned out to be necessary to reach the proposed goals. This made the remaining time
unrealistic to finish the work. These intermediate steps are enumerated below.

Needed intermediate steps

15. Identify the linearized model of the new pole using system identification techniques.

16. Measure the delay of the VICON system. For this, we placed a VICON object on top of
the hand of the robot. Then, we commanded sinusoidal and stepmovements to the wrist.
By comparing the phase lag between the readings from the joint encoders of the wrist and
the angle of the VICON object, we measured it (about 15 ms).

17. Understand the role of the hyperparameters of the kernel, and the kernel itself with real
data. For this, several pole balancing runs were necessary to acquire experimental data.

18. Use a model-free filter, such as Butterworth filter, instead of the previously implemented
KF, that is model-dependent. The automatic LQR tuning framework needs an approxi-
mate linearized model of the system. However, the approaches used for measuring the
system variables should be model-agnostic, regarding the principles of this framework.

Reached goal

The original goal of this work was successfully reached. In fact, we went further and run
an exploration parametrizing in 4D, being able to achieve better performance than in 2D. See
Chapter 4 for a detailed explanation.

Final schedule

Understanding, designing, building up and testing this framework to demonstrate its validity
required a certain amount of time, resources and assistance. The total amount of time spent
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is roughly 7 months and a half: from end of January 2015 until middle of October 2015, dis-
counting the whole month of August. On average, 10 hours per day including weekends were
dedicated to this thesis.

5.1.3 Mismatches

None of the steps proposed in the initial plan was skipped. However, some intermediate steps
(15 to 19) were needed to reach the proposed target.

The proposed goals were reached, exactly as stated at the initial schedule of this work. In
addition, the results were extended to higher dimensional problems, albeit out of the scope of
the initial plan.

We also showed this work during its development to the scientific community through one
poster presentation, one oral presentation in a conference and a submitted conference paper
(see Sec. 6.2 for details). All of this extra effort and dedication, together with solving the bal-
ancing problem on Apollo are the main reasons for the increase on the amount of time put on
this work.

Summarizing, 6 weeks more were needed to complete this thesis, with an extra of 30 hours
per week, and 2 more working days. In total, the initially planned time effort was increased by
about 120% in order to achieve the desired goals.

5.2 Cost of the solution and other alternatives

The cost of the solution itself is null, since this thesis proposes a methodology for automatic
controller tuning, independent of the experimental platform. The methodology is a com-
pendium of algorithms, ideas, and theory, which belongs to the public knowledge as much
as the stated contributions to the scientific community. Although these methods are tested in

TABLE 5.1: Approximated cost of each item (in euros)

Initial plan Followed plan
Item Price Item Price

Workstation 8,000 Workstation 8,000
Screen (x2) 2,000 Screen (x2) 2,000

Real-time workstation 6,000 Real-time workstation 6,000
SARCOS Head 60,000 SARCOS Head 60,000

Barrent hand (x2) 50,000 Barrent hand (x2) 50,000
Kuka arm (x2) 188,000 Kuka arm (x2) 188,000

ASUS Xtion PRO LIVE 200 VICON camera (x4) 60,000
VICON Workstation 10,000

Total 314,200 Total 384,000
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a robot demonstrator, the proposed framework is not limited to it. In fact, we believe it can be
scaled to more complex settings such as the industry of robots or water supply (see Sec. 6.2 for
more information), or to other more complex humanoid robots.

We summarize in Table 5.1 the cost of the core resources needed for testing this frame-
work. We distinguish between the cost of the resources if the initial plan had been followed
in contrast with the cost of the actual followed plan. Using a VICON system instead of an
ASUS Xtion increases the costs about 22 %. Therefore, trying to accomplish the pole balancing
and test the proposed automatic tuning framework with Xtion is definitely desirable to reduce
costs. Furthermore, from a practical standpoint, Xtion is easier to handle and to transport that
VICON.
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Chapter 6

IMPACT OF THIS WORK

6.1 Environmental impact

Regarding the directive 2011/92/EU of the European Parliament and of the council of 13 De-
cember 2011 on the assessment of the effects of certain public and private projects on the environment,
published on 28.1.2012 on the Official Journal of the European Union (L26), we notice in article
1, point 1 that specifications about the environmental impact only applies to public projects:

The directive shall apply to the assessment of the environmental effects of those
public and private projects which are likely to have significant effects on the envi-
ronment.

More in detail, in Article 1, point 2 (a), a project is defined within this context:

project means the execution of constructionworks or of other installations or schemes,
or, other interventions in the natural surroundings and landscape including those
involving the extraction of mineral resources.

Since the present work is not a project, but a thesis, the aforementioned regulation does not
apply.

6.2 Social impact

The automatic tuning controller proposed in this thesis does currently not have any impact on
the society else than four demonstrations to the research community. However, there exists a
prospective impact in the future.

Immediate social impact

This work is presented to the scientific community in four occasions:

• 1st Symposium on Intelligent Systems in Science and Industry (Germany, July 2015):

poster presentation of early experimental results.
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• Machine Learning in Motion Planning and Control of Robot Motion Workshop at

iROS (Germany, September 2015): oral presentation.

• First Max Planck ETH Workshop on Learning Control (Germany, November 2015):

poster presentation.

• ICRA (Sweden, May 2016): paper submitted.

Prospective social impact

A draft of a potential social impact of this thesis in the near future is presented next. However,
it must be merely understood as a hypothetical and even speculative set of ideas without any
solid scientific base.

In the robotic industry

• Suppress the need of an operator to hand-tune controllers for robots. Only a supervisor
at a high-level might be needed.

• Reduce the number of experiments and time needed for finding a suitable controller, in
comparison to a human.

In the water supply industry

Efficiently tune the parameters that control water flow and supply time of the involved dams
for a city. The observations would be the water offer-demand signals, and the cost to minimize
would be the supply surplus.

In the drone industry

Automatically tune the controller involved in the steering system of a drone based on simple
experiments. This idea has already applied on a research work with a drone by [39], but with
different approaches to the ones of this thesis.
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Chapter 7

CONCLUDING REMARKS

7.1 Achievements and future work

In this thesis, we introduce Bayesian optimization for automatic controller tuning. We develop,
and successfully demonstrate in experiments on a robotic platform, a framework based on LQR
tuning [6] and Entropy Search (ES) [8].

Themain and novel contribution of this work is to be the first on employing ES for controller
tuning and applying it on a physical robot platform. Bayesian optimization has recently gained
a lot of interest in the research community as a principled way for global optimization of noisy,
black-box functions using probabilistic methods. Thus, this work is an important contribution
toward making these methods available for automatic controller tuning for robots.

The auto-tuning algorithm was demonstrated on a 2D and a 4D experiment, both when the
method was initialized with an unstable and with a stable controller. While the 2D experiment
could presumably also be handled by grid search or manual tuning, and thus mostly served as
a proof of concept, the 4D tuning problem can already be considered difficult for a human. A
key question for the development of truly automatic tuning methods is the amount of “prior
engineering” that has to be spent to get the method to work. In particular, the 4D experiments
were promising since not a lot of tuning, and only few restarts were necessary. However,
questions pertaining to the prior choice or automatic adjustment of the method’s parameters
are relevant for future work.

This framework has been tested on the classical cart-pole balancing setting, as an entry
level problem. Scaling this set-up to a higher dimensional problem, such as the balancing of a
humanoid robot, is part of the future work.

Since the ES algorithm reasons about where to evaluate next in order to maximize the infor-
mation gain of an experiment, we expect it to make better use of the available data and yield
improved controllers more quickly than alternative approaches. Although ES has been shown
to have superior performance on numerical problems (cf. discussion in Sec. 2.2.5), investigating
whether this claim holds true in practice is future work.

Other interesting directions for future investigations concern extensions to different con-
troller tuning scenarios. Herein, we considered a scenario, where a controller is allowed to
fail during exploration (e.g., the robot was simply stopped when exceeding safety limits). In



36 Gaussian Process Optimization for Self-Tuning Control

other scenarios, it may be desirable or necessary to avoid unstable controllers; that is, to keep
the system operational during the entire tuning procedure. While ES seeks to maximize the
information obtained from an experiment, it seems reasonable to also include safety consider-
ations such as avoiding unstable controllers. Safe learning in the context of control is an area of
increasing interest and has recently been considered, e.g., in [5, 12, 40, 41] in slightly different
contexts.

7.2 Critical decisions

In Sec. 3.3 we describe the low-level control layers applied for the tracking of the end-effector.
Without the second layer, the pole balancing task can be achieved for an undefined time. How-
ever, the performance was poorer and the results less repeatable. At the time of evaluating
the performance of the system through the approximate cost (2.9), we need certain level of re-
peatability. On the contrary, the SNR might be too high, and the observed cost function might
be pure noise. For this reason, we believe that a more robust balancing, obtained with the
aforementioned second layer of control, has been a critical part for reaching the goals of this
thesis.

Another critical decision was to switch from ASUS Xtion to VICON in order to obtain the
pole angle measurement. Based on our intuition, we could predict that the amount of time
required to achieve the pole balancing using ASUS Xtion could have been easily in the same
order of magnitude of the thesis itself. In the interest of reaching the planned goals of this
thesis, we decided to rely on a ground truth regarding the motion feedback in order to focus
on improving the end-effector tracking.

7.3 General conclusion

This thesis had an equilibrated amount of theoretical insights and practical work. Rather than
testing the automatic tuning framework only in simulation, we were able to see it working on
a real system. This made us learn from a practical standpoint how to deal with the limitations
and unexpected problems of such complex scenario.

The novel nature of the work itself, and the promising results allowed us to show this work
to the scientific community in several occasions.

Beyond opening research branches, this workmight have a potential impact in the industry,
were there is a clear need of reducing time spent on tuning controllers. In fact, a recent pub-
lication [12] from Bosch GmbH, in a similar topic, shows the interest of the industry on these
kind of methodologies nowadays
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