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Abstract— To enable safe and efficient human-robot collab-
oration in shared workspaces, it is important for the robot
to predict how a human will move when performing a task.
While predicting human motion for tasks not known a priori is
very challenging, we argue that single-arm reaching motions for
known tasks in collaborative settings (which are especially rele-
vant for manufacturing) are indeed predictable. Two hypotheses
underlie our approach for predicting such motions: First, that
the trajectory the human performs is optimal with respect to an
unknown cost function, and second, that human adaptation to
their partner’s motion can be captured well through iterative re-
planning with the above cost function. The key to our approach
is thus to learn a cost function which “explains” the motion
of the human. To do this, we gather example trajectories from
two participants performing a collaborative assembly task using
motion capture. We then use Inverse Optimal Control to learn
a cost function from these trajectories. Finally, we predict a
human’s motion for a given task by iteratively re-planning
a trajectory for a 23 DoFs human kinematic model using
the STOMP algorithm with the learned cost function in the
presence of a moving collaborator. Our results suggest that our
method outperforms baseline methods and generalizes well for
tasks similar to those that were demonstrated.

I. INTRODUCTION

Human-robot collaboration has become a popular research

area in recent years due to the difficulty of automating tasks

such as electronics or aircraft assembly. In such cases the

human and the robot workers must adapt to each other’s

decisions and motions. In this paper we address an important

step toward more fluid human-robot collaboration: the ability

to predict human motion in collaborative settings.

A great deal of work in the fields of neuroscience [1], [2],

[3] and biomechanics [4] has sought to model the principles

underlying human motion. However, human motion in en-

vironments with obstacles has been difficult to characterize.

Furthermore, human motion in collaborative tasks where two

humans share a workspace is difficult to model due to unclear

social, interference, and comfort criteria. While some of

these principles have been studied in the context of human

navigation [5], to our knowledge there is no framework for

predicting human motion in collaborative manipulation tasks.

This paper describes our efforts toward creating such

a framework. Predicting human motion in an open-ended
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Fig. 1. Shared workspace assembly experiment (left) and sampling of
collision free manipulation motions for Inverse Optimal Control (right).

collaborative context (where the tasks are not known a-

priori) would require a very general model of how humans

move in close proximity to one another, which we believe

to be very difficult to obtain. Instead, we propose a method

for predicting human motion for single-arm reaching in a

collaborative context where the task is known. Though the

range of applications of our methods is restricted, we argue

that this is an important category of motions to be able to

predict, since many pick-and-place tasks in manufacturing

fall into this category. Being able to predict these motions

well can move us closer to enabling safe and efficient human-

robot collaborative manipulation in manufacturing.

Our approach to predicting human motion in these settings

is based on studying how two humans collaborate in a shared

workspace (as in Figure 1). We acknowledge that a human’s

motion in human-robot collaboration may differ from his/her

motion when collaborating with a human partner; e.g. the

human may be afraid of the robot and stay farther away

from it than he/she would from another person. However we

believe that studying how two humans collaborate gives us an

important baseline against which human-robot collaborations

can be judged; if we can predict what a natural motion for

a human is in a given collaborative context, we can judge

when the human deviates significantly from that motion in

response to a robot’s actions. Also, the method we present

here for learning a cost function that describes human motion

can be used to learn the cost function for a human-robot pair

if the features of the cost function can be adjusted to account

for the robot’s kinematics (which would be straightforward

for an anthropomorphic robot).



Our approach is based on two hypotheses about collabo-

rative human motion: 1) The trajectory the human performs

is optimal with respect to an unknown cost function, and 2)

Human adaptation to their partner’s motion can be captured

well through iterative re-planning of a trajectory which is

locally-optimal with respect to the same cost function. Our

method thus seeks to learn a cost function for which the

human’s motion is locally-optimal from training data.

To gather training data, we record the motion of two

humans performing a collaborative task using a motion

capture system and then manually segment that recording

into individual reaching motions. These reaching motions,

along with a set of feature functions encoding trajectory

smoothness and distance relationships between the humans

are used as input for the Path Integral Inverse Reinforcement

Learning (PIIRL) algorithm [6]. PIIRL produces a weighting

for the feature functions that captures their relative impor-

tance. The learned cost function is then a weighted sum of

the feature functions using the learned weights. To predict

human motion we input the learned cost function into the

STOMP algorithm [7], which we adapt for iterative motion

re-planning in a dynamic environment.

In our experiments we gathered the training data from

a pair of participants in a structured assembly task (see

Figure 1). We found that we are able to capture a cost

function for collaborative reaching motions that outperforms

baseline methods in terms of generalizing to unseen reaching

examples. We also found that re-planning was more effective

than single-shot planning for capturing a human’s adaptation

to their partner’s motion in cases where the motion of

the two participants interfered significantly. While these

results are preliminary and the method needs to be evaluated

with a broader human-subjects study, the initial results are

compelling since we are able to predict human motion well

for these tasks given a training set of only seven trajectories.

The remainder of this paper is structured as follows: In the

next section we give a description of related work. In Section

III we describe the approach that enables us to recover the

cost function from training data. In Section IV, we present

the experimental setup used to gather collaborative reaching

motions. In Section V, we present results that illustrate

the ability of our method to predict collaborative reaching

motions.

II. RELATED WORK

Our work contributes to the field of autonomous robot

manipulation in the presence of humans, by creating a

method to predict human motion which could be used

onboard a robot. In our prior work [8], we have incorporated

early prediction of human motion with an iterative motion

re-planning approach to generate efficient robot motions.

However the prediction based on Gaussian Mixture Models

(GMM), which is a commonly used technique in gesture

recognition, is limited to a set of known tasks in a structured

environment. Similarly to our approach Koppula et al. have

integrated prediction of 3D trajectories of the human hand

[9] in the robot planning using Conditional Random Fields

(CRFs) to model affordances of objects in the scene. This

work has been recently extended in [10] to predict high-

dimensional trajectories but does not account for dynamic

environments nor collaborative tasks as we aim to do in this

work. Hidden Markov Models (HMMs) are another popular

stochastic modeling technique for human motion prediction.

In [11], Kuliç et al. describe an approach for on-line,

incremental learning of full body motion primitives from

observation of human motion encoded using HMMs, so that

the same model can be used for both motion recognition and

motion generation. These graphical model representations

(i.e., GMMs, CRFs and HMMs), allow to encode efficiently

relationships such as those between activities, objects and

motions, but do not capture well obstacles constraints, which

we address in this work.

The underlying principles of human motion have been

investigated in terms of muscle activation and neural activity

[1], [12], [4], but there is no study providing a model of hu-

man motion handling obstacles in collaborative manipulation

tasks. A detailed subject-customized bio-mechanical model

has been used in [13] to efficiently reconstruct a subject

motion dynamics from motion capture data in realtime

using a whole-body control approach. Many experiments

investigating reaching under various conditions [1], [12]

suggest that human motor-behavior is determined by the

minimization of a cost function used to weight different

movement options to a task, and to select a particular

solution. Stochastic Optimal Control provides a framework to

model such motor-behavior, while taking into account motor

noise inherent to sensorimotor control [3]. In [14], Rigoux

and Guigon describe a model derived from the maximization

of the discounted weighted difference between expected

rewards and foreseeable motor efforts, relevant to address the

neural bases of decision making and motor control. Recently

in [15], Ganesh and Burdet showed on a manipulation task,

that the central nervous system uses a motion planning phase

with multiple plans, and a memory mechanism. While this

suggests that motion planning plays an important role in

explaining human motion, to the best of our knowledge,

Inverse Optimal Control of human reaching-motion has only

been proposed in [16], where the authors present a method

for transferring reaching behaviors from humans to robots.

The authors were able to capture the complex, non-linear

dynamics of the human musculoskeletal system, nonetheless

the system was demonstrated on the control of a ball hitting

task and did not consider workspace obstacles.

The Inverse Optimal Control (IOC) problem, occasionally

named Inverse Reinforcement Learning (IRL), is the prob-

lem of finding the cost or reward function that an agent

optimizes when computing a trajectory or policy given a

set of demonstrated solutions. It is usually framed in the

context of a Markov Decision Processes. IRL was introduced

by Ng et al. in [17], who proposed two algorithms for

discrete and continuous states spaces. Later apprenticeship

learning [18] introduced the notion of margin maximization

between the cost of the demonstration and other solutions.

Apprenticeship learning consists of solving iteratively the
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Fig. 2. Data flow through the system. The gathered human-motion library is used to generate sample trajectories. Features (Φ) are then computed for the
demonstrated and sampled trajectories. The PIIRL algorithm is then applied to generate a weight vector w

∗. Prediction of collaborative human reaching
motions can then be performed by an iterative re-planning algorithm based on STOMP, relying on the learned weight vector w

∗ and a kinematic model
of the human.

forward problem, modifying the weights at each iteration.

In [19], Zeibart et al. proposed an approach to IRL based on

the maximum entropy principle. The methods based on this

principle [20], [21], [22] do not require solving the forward

problem and allow handling high-dimensional continuous

state spaces. Instead of a solution to the forward problem

they proceed by sampling trajectories. Our approach is based

on the algorithm introduced in [6], which is based on a

similar principle and only requires local optimality of the

demonstrated trajectories.

We rely on recent developments in trajectory optimization

for motion planning [23], [7] to compute low-cost motion

predictions. Our framework uses the Stochastic Trajectory

Optimizer for Motion Planning (STOMP) algorithm, which

has proven effective for the type of manipulation motion

planning we consider [7]. Recently, STOMP was adapted

to run faster than real-time [24], and we plan to employ this

new method in future work.

III. APPROACH

Our approach to predicting human motion in collaborative

manipulation tasks consists of two phases (see Figure 2).

First we gather a library of collaborative motions. We then

segment the motions into elementary reaching motions (i.e.,

from a resting configuration to a grasping configuration).

These motions are then used as demonstrations by the IOC

algorithm to learn a cost function where these demonstrations

are optimal. Finlay, we use the learned cost function inside

an interative motion-planner to predict how the human will

move.

A. Inverse Optimal Control algorithm

Human upper-body motions can be represented as time-

parametrized curves τ in the human’s configuration space.

Because these motions are inherently high-dimensional (in

this work we consider 23 DoFs), global optimality is in-

tractable. Hence we use the Path Integral Inverse Reinforce-

ment Learning (PIIRL) algorithm [6], which can deal with

high-dimensional continuous state-action spaces, and only

requires local optimality of the demonstrated trajectories.

The original IOC problem solved by PIIRL aims to recover

a cost function composed of a control cost term and a

general cost term (i.e., configuration dependent) that can

be combined with a terminal cost term, which we do not

use here. In our formulation of the problem, we consider

linearly-parametrized cost functions where each elementary

feature function is user defined. Thus each feature function

penalizes motions that do not respect an associated property,

see Section III-D for a description of the features we use.

The cumulative cost C(τ), and feature count Φ(τ) of a

trajectory are defined as follows:

C(τ) = wTΦ(τ) ,Φ(τ) =

[

G(τ)
A(τ)

]

,

where Φ is a multi-valued feature function defined by the

user, w are weights associated with the features, which the

algorithm attempts to learn. A is a term enforcing smoothness

(i.e., control cost) and G a general term of the form:

G(τ) =

∫ T

t=0

φ(qt) dt ≃
N
∑

i=1

φ(qi)δt,

where qi is the configuration at index i along the trajectory

and N the number of waypoints.

PIIRL samples trajectories with low smoothness features

around each demonstration by sampling from a Multivariate

Gaussian distribution with covariance R−1 centred at the

demonstration (for a definition see [7]). Note that in the

sampling phase, trajectories that collide with the environment

are discarded by performing collision detection.

The weights are then obtained by solving the following

convex minimization problem:

w∗ = argmin
w

−

D
∑

i=1

log
e−wT

Φi

K
∑

k=1

e−wTΦi,k

,

where D is the number of demonstrations and K the number

of samples per demonstration.

In the original version of PIIRL, a penalty on the L1 norm

of the weight vector w was added to the loss function to

achieve learning with a large set of features. In this case the

loss function is still convex but non differentiable due to the

regularization term. In order to handle this non linearity, the

Orthant-Wise Limited-memory Quasi-Newton [25] algorithm

was used, which introduces additional projection steps and

constrains the search to one orthant at a time. Using a

regularization term adds a supplementary parameter to the

algorithm that can be tuned through cross validation, however

we found the results to be sparse enough without this

regularization term (see Section V).



Fig. 3. Each line corresponds to a distance used in the feature vector
(left). 3D model of the experiment used for collision checking with hand
trajectories of the seven demonstrations used in the result section (right).

Fig. 4. Division of a demonstration τ0 into smaller segments

B. Iterative re-planning

Iterative re-planning consists of planning iteratively while

considering the current environment as static. It is a common

approach to accounting for dynamic obstacles in robot mo-

tion planning [26], [24]. Typical approaches either maintain

a tree or graph of collision-free motions, which is updated at

each replanning step, or deform the current trajectory locally

given the updated positions of obstacles in the world. Our

approach aims to recover a cost function that can be used

for such a framework. Thus, once the library of collaborative

motion trajectories is gathered, it is segmented manually into

elementary manipulation motions, which are then cut into

smaller segments by advancing ∆t along each demonstration

τ0 as depicted in Figure 4. The newly generated sub-

segments are added to the demonstration trajectory set. For

each segment the initial velocity q̇0, acceleration q̇0 and jerk
...
q0, as well as the configuration of the other human and the

positions of obstacles are used to compute the features for

that segment and for its corresponding sample trajectories.

When planning with the human model, we make use of

the STOMP algorithm [7], which is a trajectory optimizer

that iteratively deforms an initial solution by stochastically

estimating the gradient in trajectory space. It internally

represents the trajectory by an m by n matrix, where m

is the number of DoFs and n the number of waypoints. At

each iteration, trajectories are sampled from a Multivariate

Gaussian distribution with covariance R−1 (see [7]), the

general and control costs of the sampled trajectories are

combined to generate the update. Thus it does not require

the analytical gradient of the cost function to be known,

and generally converges to a local minimum within 100

iterations.

The original STOMP algorithm presented in [7] optimizes

a combination of obstacle and smoothness cost. The first

is estimated by summing a penetration cost for a set of

bounding spheres in the obstacles at every waypoint using

a signed Euclidean Distance Transform (EDT). Note that

the weight of this cost is manually tuned in our result

section. The second is estimated by summing the squared

accelerations along the trajectory using finite differencing.

In order to account for the other human, we sum a third cost

criterion defined in the next section. The smoothness cost is

defined differently from [6], it is also described in the next

section. In order to account for smoothness between each

replanning step, a buffer of configuration waypoints from

the previous replanning step is used to compute velocity,

acceleration and jerk at the initial configuration.

C. Human kinematic model description

We model the human kinematics following the recommen-

dation for joints coordinates in [4]. The model is composed

of translational and rotational joints. In our experiments we

only account for upper body and right arm motions, which

totals 23 DoFs. Three translations and three rotations are

used for the pelvis, three rotations for the torso joint, three

translations followed by three rotations for the shoulder joint,

one translation followed by three rotations for the elbow, one

translation followed by three rotations for the wrist joint.

When predicting motions using STOMP the bounds of the

translational joints are set using the minimal and maximal

values observed in the motion capture data. These transla-

tions are used to compensate for errors in the computation

of joint centers arising from marker placement errors. They

are also useful for addressing the approximations we make

in modeling the human kinematics.

D. Feature functions

We consider variants of feature functions that have been

introduced in previous work to account for human-robot

interaction constraints [27], [28], [5]. We make use of two

types of features inspired by the proxemics theory [29] and

experiments in neuroscience [1]:

1) Distances between human links: The goal of these

features is to avoid collision risks. However, in situations

requiring close interaction (e.g., reaching over the other

person to access an object), two people may come close to

one another. To model this avoidance behavior we consider

16 pairwise distances (see Figure 3) along the arm and pelvis

between the two humans (i,e,. wrist, elbow, shoulder, pelvis).

2) Smoothness: These features ensure that the trajectory

remains smooth. We measure configuration and task space

length, squared velocities, squared accelerations and squared

jerks along the trajectory using finite differencing.

IV. EXPERIMENTS

The experiment we designed to gather training and test

data consisted of two participants standing shoulder to

shoulder parallel to a table; each working on an individual

task within a shared workspace (Figure 5). In order to

execute their task, the participants must place colored balls

on pegs of the corresponding color, which were placed in

a specified order (Figure 5(a)). Adhesive tape was placed



(a) Initial state (b) End state

(c) t = 0.0 sec (d) t = 0.5 sec (e) t = 1.0 sec

Fig. 5. Experiment design (top) and motion capture of the task (bottom).

on the pegs allowing quick and easy placement. The aim of

our experiment is to simulate a packing task, for instance

packing different chocolates into a sampler box.

A. Experiment flow

The participants look at the color of the first empty peg

in their plan, pick up a ball from the corresponding color

zone, and place the ball on top of the peg until all pegs

in the plan are filled with balls (Figure 5(b)). Following a

predetermined order of execution denies the participants the

ability to switch tasks in mid-motion. This allows us to study

the manipulation planning component of human motion in

isolation. In future work, we will investigate our results with

a task planner and allow the pegs to be filled in any order.

B. Recording method

In order to record these interactions, we used a Vicon

motion capture system consisting of eight Bonita cameras.

Subjects wore a suit consisting of three rigid plates and nine

markers which had been placed according to standards in

use in the field of biomechanics [4]. Our full marker set

(seen in Figure 5(c)) consists of a waist-belt and headband

attached to rigid objects, a marker on the back of the hand,

two on each side of the wrist, an elbow pad, two markers on

either side of the shoulder, and two markers straddling both

the sternum and xyphoid process. This set of markers allows

us to easily find the center of rotation of the wrist, elbow,

shoulder and torso. From these joint centers, we obtain a

23 DoFs configuration of the right arm and torso for each

participant using analytical inverse kinematics.

Recording fluid collaborative motion can be difficult when

one participant occludes the other from the Vicon cameras. A

joint defined by a pair of markers becomes occluded if one

of the markers becomes occluded. Upon noticing frequent

occlusions of the elbow in our tests, we switched from a

marker pair to an elbow pad with multiple markers.

The tracker then labels each marker in a known calibration

pose wherein the subject stands upright with their hands

rested comfortably at their side. After each update from the

Vicon system, marker indices are matched by closest distance

to the previous frame. If a marker label cannot be found

within a threshold distance, it is considered occluded, and

the missing marker is filled in with data from the previous

update.

V. RESULTS

In this section we present results illustrating the capacity

of the algorithm to recover a cost function using distance be-

tween links and smoothness features. We define an active hu-

man, whose motion trajectories are used as demonstrations,

and a passive human, whose trajectories serve as contexts

for the IOC and for the iterative re-planning prediction tests.

First we validate the approach by planning with a manually

defined weight vector and measuring the cost difference

between the initial trajectory and the recovered trajectory.

This experiment gives us a rough estimate for tuning the

number trajectory samples per demonstration in PIIRL. We

then evaluate the capacity of the IOC algorithm to predict

human motion by comparing the demonstrations to motions

computed using our framework (i.e., with a weight vector

generated by PIIRL on these demonstrations). We then show

the ability of the predictions to generalize to new situations

by performing leave-one-out testing over seven motions. We

compare the results to two baseline methods. Finally we

demonstrate the usefulness of the re-planning approach on a

particularly difficult motion.

Fig. 6. Three trajectories computed using the STOMP motion planner. (a)
Trajectory planned with a user-given weighing of features. (b) Trajectory
planned with weights recovered by PIIRL. (c) Trajectory planned with a
random weight vector.
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solutions planned on the example of Figure 6 using the recovered weight
vector and the original weight vector.



Fig. 8. Three trajectories computed using the STOMP motion planner.
Demonstrations in red and 10 predicted motion trajectories given the start
and goal configuration in blue.

Joint center distances Task space

Run µ σ min max µ σ min max

1 33.17 3.35 28.41 40.33 44.44 2.27 41.56 49.69

2 37.20 3.57 32.39 43.91 53.08 2.17 49.50 56.13

3 53.37 7.17 40.36 64.42 76.26 4.22 70.08 82.28

4 20.95 2.28 17.94 25.12 31.39 1.00 29.69 33.09

5 21.59 1.84 17.58 23.75 26.50 1.13 25.03 28.44

6 10.12 1.23 7.83 12.11 23.62 0.85 22.46 25.00

7 25.56 5.09 16.91 34.30 45.69 3.45 40.18 52.38

All 28.85 3.50 23.06 34.84 42.99 2.15 39.78 46.71

TABLE I

DTW PERFORMED BETWEEN THE SEVEN DEMONSTRATIONS AND THE

TRAJECTORIES PLANNED ON A STATIC ENVIRONMENT, RESULTS ARE

AVERAGED OVER 10 RUNS

A. Validation

We first planned a trajectory using the STOMP algorithm

[7] in a static environment with no replanning and a user

input weight vector (see Figure 6). We then used PIIRL

presented in Section III-A to recover a weight vector using

this planned trajectory as a demonstration. Figure 7 shows

the difference in cost between the “demonstrated” trajectory

and the trajectories planned using the recovered weights

as the number of samples PIIRL considers increases. We

use the original weight vector to assess the difference in

cost to measure how close the trajectories obtained under

the learned weights are to the locally optimal solution. The

results are averaged over 10 runs. As one can see, the mean

and standard deviation decrease as the number of samples

increases, which indicates the capacity of the algorithm to

recover cost functions for the type of reaching motions we

consider. These results were used to select the number of

sample trajectories, it is set to 700 in the rest of the results

presented in this section.

B. Predicting human motion

In order to validate the capacity of the approach to predict

human motion, we ran the experiment described in Section

IV to gather collaborative motions. The motions were then

segmented manually into seven elementary manipulation

motions (i.e., from a resting posture to a grasping posture).

The seven motions start and end in the same area (see

Figure 9). We then run PIIRL without the segmenting phase

described in Section III-B, using these seven demonstrations

to generate seven weights w∗, one for each demonstration.

This set of weights is then used to plan for motion-trajectory
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Fig. 10. Average weight vector and standard deviation from the leave-one-
out testing performed over the seven motions of Figure 9. The distances are
described with active human in the bottom.

predictions using our motion planning framework. The start

and goal configurations are set to the ones from the manually

segmented demonstrations-trajectories. However they could

be set using biomechanics-based inverse-kinematics [30].

We report the results of Dynamic Time Warping (DTW)

comparison between the resulting trajectory predictions and

the demonstrations and in Table I.

DTW is an algorithm for measuring similarity between

two temporal sequences that may vary in time or speed. It

relies on a distance metric between waypoints. We use two

metrics throughout this section: sum of joint center distances

and task space distances. We do not report the configuration

space metric as it does not give a fair estimate due to the

high redundancy of our kinematic model, which represents

the elbow and wrist as ball joints. The joints considered in

the first metric are the pelvis, torso, shoulder, elbow and

wrist. The task space metric combines Euclidean distance

and angle between consecutive Quaternions. Figure 8, shows

demonstrations 1 and 2 along with the corresponding motion

trajectories predicted by the motion planner. Comparing

trajectories is known to be a difficult problem. The values

in Table I and visualization in Figure 8 provide a reference

point for what DTW values we can expect for visually similar

trajectories.

C. Leave-one-out testing

To evaluate the capacity of our predictions to generalize

to new situations we have performed a leave-one-out testing

over the seven motions. The demonstration trajectories were

cut into smaller segments using the procedure described

in Section III-B, with a ∆t = 0.1sec. Resulting in 33

demonstrations used for IOC. The obtained average, and

standard deviation values of the weights are shown in Figure

10.

The obtained weights indicate the importance of smooth-

ness features rather than distance features. The distances

are measured between the active human (on the left) and

passive human (on the right). All distances between the active

human’s arm and passive’s pelvis are important, as well as

between the active’s elbow and passive’s shoulder. The high



Fig. 9. Seven demonstrations (red) along with the ten trajectories planned with baseline 0 (green) and with the weight vector obtained by IOC (blue).

Re-planning No Re-planning

Joint center distances Task space Joint center distances Task space

Method µ σ min max µ σ min max µ σ min max µ σ min max

baseline 1 81.01 3.88 74.48 87.43 63.11 2.51 58.70 67.85 64.96 3.94 58.21 71.03 57.78 2.69 53.86 62.57

baseline 0 39.55 3.34 33.83 45.72 48.04 1.89 45.29 51.45 34.06 3.72 28.60 39.78 45.81 1.91 42.60 49.08

With IOC 35.34 4.78 27.36 43.22 43.56 4.21 37.03 50.46 30.98 4.27 24.12 39.04 42.18 3.17 37.06 46.90

TABLE II

DTW PERFORMED BETWEEN THE SEVEN DEMONSTRATIONS AND THE TRAJECTORIES PLANNED WITH AND WITHOUT RE-PLANNING, RESULTS ARE

AVERAGED OVER 10 RUNS.

weight values corresponding to the distances of the active’s

pelvis and passive’s body links do not impact the overall

motion as participants do not move the pelvis as much as the

arm during manipulation. Note that during the sampling and

planning phase the pelvis translation bounds are set to the

minimal and maximal values observed in the demonstrations,

which constrains the pelvis motions to remain within these

bounds.

For comparison, trajectories were also generated using two

baseline methods:

• Conservative tuning (baseline 1): the squared velocities

and the 16 link distances manually tuned to the same

value.

• Aggressive tuning (baseline 0): the squared velocities

without considering the distances between links.

Table II summarizes the DTW similarity values using

the joint center distance and the task space metric, for all

methods with and without replanning. DTW is computed

between the respective demonstrations (i.e., from which the

start and goal configurations are extracted) and the planned

trajectories. In the “no re-planning” version STOMP only

considers the initial configuration of the passive human, and

thus the active human motion is not updated according to

the passive human motion.

Trajectories planned with baseline 0 and with the IOC

recovered weights have lower DTW scores than the ones

planned with baseline 1, this is consistent throughout both

metrics and with or without replanning. Trajectories planned

with baseline 0 sometimes outperform trajectories planned

with the IOC recovered weights, which can be explained

by the sparsity of the distance weights recovered by PIIRL

(baseline 0 does not consider distances between links at all).

Nevertheless, the average DTW values of the IOC recovered

cost functions version are lower than the baseline 0 version’s,

indicating the validity of using IOC compared to hand tuning

the weight vector. This can be seen on Figure 9, which shows

the demonstrations (red), the predictions obtained with the

baseline 0 method (green), and the predictions obtained with

the IOC recovered weight vector (blue), here both types of

predictions use iterative re-planning.

Note that the average DTW values for the leave-one-out

test are close to the values obtained in the validation test

(joint distance score: 30.98 compared to 28.85), which shows

the capability of our method to generalize to new situations.

The “no re-planning” approach tends to outperform the

“re-planning” approach throughout the different methods,

but remains close as indicated by the task space values

comparison when using the recovered cost function: 43.56

and 42.18 (stddev 4.21 and 3.17) with and without re-

planning respectively.

D. Significant interference

To show the capacity of the re-planning approach to

better predict human motion in more difficult situations we

have selected a motion where the passive human interferes

significantly with the active human while he/she is reaching.

The weight vector is obtained by training with all seven

Type µ σ min max

Joint center distances

No re-planning 52.89 9.66 39.94 67.09

With re-planning 44.91 6.62 36.15 55.20

Task space

No re-planning 49.22 8.25 37.75 63.78

With re-planning 36.20 8.13 24.81 50.77

TABLE III

DTW PERFORMED BETWEEN THE DEMONSTRATION OF FIGURE 11 AND

THE TRAJECTORIES PLANNED, RESULTS ARE AVERAGED OVER 10 RUNS



Fig. 11. A demonstration of the benefits of re-planning on a difficult
example. Original motion (red) and predicted motions with (blue) and
without (green) re-planning.

motions used in the leave-one-out phase, but does not include

the “demonstration” from which we extract the start and

end configurations for prediction. The motions obtained with

and without re-planning are shown in Figure 11, and the

DTW results are shown in Table III. In this case, using re-

planning better predicts the active human motion because

the trajectories generated with no re-planning collide with

the arm of the passive human. This result is underscored by

the smaller average DTW values found for the joint center

distances and task space metric.

VI. CONCLUSION AND FUTURE WORK

We have presented an important step toward predicting

how humans move when collaborating on a manipulation

task by applying inverse optimal control to data gathered

from motion capture of collaborative manipulation in a

shared workspace.

To demonstrate the feasibility and efficacy of our approach

we have provided test results consisting of learning a cost

function, and comparing the planned motions using the

learned weights to the demonstrations using Dynamic Time

Warping (DTW). The approach based on Inverse Optimal

Control (IOC) allows us to find a cost function balancing

different features that outperforms hand-tuning of the cost

function in terms of task space and joint center distance

DTW. The method presented in this paper could be extended

to allow learning of a cost function for robot motion planning

of human-robot collaborative manipulation tasks where the

human and the robot manipulate objects simultaneously in

close proximity.

Future work concerns enhancing the type of features to be

taken into account to improve the prediction, and retargeting

these features for motion planning on a PR2 robot.
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