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oration in shared workspaces, it is important for the robot
to predict how a human will move when performing a task.
While predicting human motion for tasks not known a priori is
very challenging, we argue that single-arm reaching motions for
known tasks in collaborative settings (which are especially rele-
vant for manufacturing) are indeed predictable. Two hypotheses
underlie our approach for predicting such motions: First, that
the trajectory the human performs is optimal with respect to an
unknown cost function, and second, that human adaptation to
their partner's motion can be captured well through iterative re-
planning with the above cost function. The key to our approach
is thus to learn a cost function which “explains” the motion
of the human. To do this, we gather example trajectories from
two participants performing a collaborative assembly task using Fig- 1.  Shared workspace assembly experiment (left) and sampling of
motion capture. We then use Inverse Optimal Control to learn collision free manipulation motions for Inverse Optimal Control (right).

a cost function from these trajectories. Finally, we predict a .
human's motion for a given task by iteratively re-planning ~collaborative context (where the tasks are not known a-

a trajectory for a 23 DoFs human kinematic model using priori) would require a very general model of how humans
the STOMP algorithm with the learned cost function in the  move in close proximity to one another, which we believe
presence of a moving collaborator. Our results suggest that our {5 pe very dif cult to obtain. Instead, we propose a method
ggtkgogi n(zitf;r;etr;otrhrgzeb?sgthr\:vee:gedtg(r)::ng?rgtggherallzes well for for predicjting human motion for sing'le-arm reaching in a
collaborative context where the task is known. Though the
range of applications of our methods is restricted, we argue
. that this is an important category of motions to be able to
Human-robot collaboration has become a popular researﬁt:bdict, since many pick-and-place tasks in manufacturing
area in recent years due to the dif culty of automating taskgy| into this category. Being able to predict these motions
such as electronics or aircraft assembly. In such cases @] can move us closer to enabling safe and ef cient human-
human and the robot workers must adapt to each othergyot collaborative manipulation in manufacturing.
decisions and motions. In this paper we address an importantour approach to predicting human motion in these settings
step tovyard more uid .human-robot co!laborat_ion: the abilityis based on studying how two humans collaborate in a shared
to predict human motlo_n in collaborative settl_ngs. workspace (as in Figufg 1). We acknowledge that a human's
A great deal of work in the elds of neuroscience [1], [2], motion in human-robot collaboration may differ from his/her
[3] and biomechanics [4] has sought to model the principleg,qtion when collaborating with a human partner: e.g. the
underlying human motion. However, human motion in €npyman may be afraid of the robot and stay farther away
vironments with obstacles has been dif cult to characterizg,q, it than he/she would from another person. However we
Furthermore, human motion in collaborative tasks where Wgjieve that studying how two humans collaborate gives us an
humans share a workspace is dif cult to model due to unclegf, o rtant baseline against which human-robot collaborations
social, interference, and comfort criteria. While some of4n, pe judged: if we can predict what a natural motion for
these principles have been studied in the context of human,uman is in a given collaborative context, we can judge
navigation[S], to our knowledge there is no framework for\yhen the human deviates signi cantly from that motion in
predicting human motion in collaborativeanipulationtasks.  yegponse to a robot's actions. Also, the method we present
This paper describes our efforts toward creating suchere for learning a cost function that describes human motion
a framework. Predicting human motion in an open-endegh, pe used to learn the cost function for a human-robot pair
. . . if the features of the cost function can be adjusted to account
This work is supported in part by the Of ce of Naval Research under, e . . .
Grant N0O0014-13-1-0735 and by the National Science Foundation undg?r the robot's kinematics (Wh|Ch would be Stra|ghtfonNard
Grant 11S-1317462. for an anthropomorphic robot).
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Our approach is based on two hypotheses about collab@RFs) to model affordances of objects in the scene. This
rative human motion: 1) The trajectory the human performaork has been recently extended in [10] to predict high-
is optimal with respect to an unknown cost function, and 2Jlimensional trajectories but does not account for dynamic
Human adaptation to their partner's motion can be capturezhvironments nor collaborative tasks as we aim to do in this
well through iterative re-planning of a trajectory which iswork. Hidden Markov Models (HMMs) are another popular
locally-optimal with respect to the same cost function. Oustochastic modeling technique for human motion prediction.
method thus seeks to learn a cost function for which then [11], Kulic et al. describe an approach for on-line,
human's motion is locally-optimal from training data. incremental learning of full body motion primitives from

To gather training data, we record the motion of twaobservation of human motion encoded using HMMs, so that
humans performing a collaborative task using a motiothe same model can be used for both motion recognition and
capture system and then manually segment that recordingption generation. These graphical model representations
into individual reaching motions. These reaching motiongj.e., GMMs, CRFs and HMMs), allow to encode ef ciently
along with a set of feature functions encoding trajectoryelationships such as those between activities, objects and
smoothness and distance relationships between the humamstions, but do not capture well obstacles constraints, which
are used as input for the Path Integral Inverse Reinforcemeant address in this work.

Learning (PIIRL) algorithm [6]. PIIRL produces a weighting The underlying principles of human motion have been
for the feature functions that captures their relative impoiinvestigated in terms of muscle activation and neural activity
tance. The learned cost function is then a weighted sum {f], [12], [4], but there is no study providing a model of hu-

the feature functions using the learned weights. To predicban motion handling obstacles in collaborative manipulation
human motion we input the learned cost function into théasks. A detailed subject-customized bio-mechanical model
STOMP algorithm [7], which we adapt for iterative motionhas been used in [13] to efciently reconstruct a subject
re-planning in a dynamic environment. motion dynamics from motion capture data in realtime

In our experiments we gathered the training data frorsing a whole-body control approach. Many experiments
a pair of participants in a structured assembly task (seémsvestigating reaching under various conditions [1], [12]
Figure[1). We found that we are able to capture a costggest that human motor-behavior is determined by the
function for collaborative reaching motions that outperformsninimization of a cost function used to weight different
baseline methods in terms of generalizing to unseen reachingpvement options to a task, and to select a particular
examples. We also found that re-planning was more effectiwmlution. Stochastic Optimal Control provides a framework to
than single-shot planning for capturing a human's adaptatianodel such motor-behavior, while taking into account motor
to their partner's motion in cases where the motion ofioise inherent to sensorimotor control [3]. In [14], Rigoux
the two participants interfered signi cantly. While theseand Guigon describe a model derived from the maximization
results are preliminary and the method needs to be evaluated the discounted weighted difference between expected
with a broader human-subjects study, the initial results arewards and foreseeable motor efforts, relevant to address the
compelling since we are able to predict human motion welieural bases of decision making and motor control. Recently
for these tasks given a training set of only seven trajectoriei [15], Ganesh and Burdet showed on a manipulation task,

The remainder of this paper is structured as follows: In ththat the central nervous system uses a motion planning phase
next section we give a description of related work. In Sectiowith multiple plans, and a memory mechanism. While this
[Mwe describe the approach that enables us to recover tiaggests that motion planning plays an important role in
cost function from training data. In Sectipn]IV, we presenexplaining human motion, to the best of our knowledge,
the experimental setup used to gather collaborative reachitiiyerse Optimal Control of human reaching-motion has only
motions. In Sectior] V, we present results that illustratéeen proposed in [16], where the authors present a method
the ability of our method to predict collaborative reachindor transferring reaching behaviors from humans to robots.
motions. The authors were able to capture the complex, non-linear
dynamics of the human musculoskeletal system, nonetheless
the system was demonstrated on the control of a ball hitting

Our work contributes to the eld of autonomous robottask and did not consider workspace obstacles.
manipulation in the presence of humans, by creating a The Inverse Optimal Control (IOC) problem, occasionally
method to predict human motion which could be usedamed Inverse Reinforcement Learning (IRL), is the prob-
onboard a robot. In our prior work [8], we have incorporatedem of nding the cost or reward function that an agent
early prediction of human motion with an iterative motionoptimizes when computing a trajectory or policy given a
re-planning approach to generate efcient robot motionsset of demonstrated solutions. It is usually framed in the
However the prediction based on Gaussian Mixture Modelsontext of a Markov Decision Processes. IRL was introduced
(GMM), which is a commonly used technique in gesturdoy Ng et al. in [17], who proposed two algorithms for
recognition, is limited to a set of known tasks in a structurediscrete and continuous states spaces. Later apprenticeship
environment. Similarly to our approach Koppula et al. havéearning [18] introduced the notion of margin maximization
integrated prediction of 3D trajectories of the human hanHetween the cost of the demonstration and other solutions.
[9] in the robot planning using Conditional Random FieldsApprenticeship learning consists of solving iteratively the

Il. RELATED WORK
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Fig. 2. Data ow through the system. The gathered human-motion library is used to generate sample trajectories. Fe¢atxgeégn computed for the
demonstrated and sampled trajectories. The PIIRL algorithm is then applied to generate a weightve€&udiction of collaborative human reaching
motions can then be performed by an iterative re-planning algorithm based on STOMP, relying on the learned weight vantbia kinematic model

of the human.

forward problem, modifying the weights at each iterationlinearly-parametrized cost functions where each elementary
In [19], Zeibart et al. proposed an approach to IRL based deature function is user de ned. Thus each feature function
the maximum entropy principle. The methods based on thjgnalizes motions that do not respect an associated property,
principle [20], [21], [22] do not require solving the forward see Sectiofi TII-D for a description of the features we use.
problem and allow handling high-dimensional continuous The cumulative cosC( ), and feature counf{ ) of a
state spaces. Instead of a solution to the forward probletrajectory are de ned as follows:

they proceed by sampling trajectories. Our approach is based cy=w'( ):( )= G() .

on the algorithm introduced in [6], which is based on a ' A()

similar principle and only requires local optimality of the . . .
P pie nly req P y where is a multi-valued feature function de ned by the
demonstrated trajectories. . . . )
. . ... user,w are weights associated with the features, which the
We rely on recent developments in trajectory optimization . . )
: ) . —algorithm attempts to leari is a term enforcing smoothness
for motion planning [23], [7] to compute low-cost motion

predictions. Our framework uses the Stochastic Trajector%'/e" control cost) an@ a general term of the form:

Optimizer for Motion Planning (STOMP) algorithm, which Z W
has proven effective for the type of manipulation motion G()= (q)dt’ (9) t;
0

planning we consider [7]. Recently, STOMP was adapted t= i=1

to run faster than real-time [24], and we plan to employ thighereq is the con guration at index along the trajectory
new method in future work. andN the number of waypoints.
PIIRL samples trajectories with low smoothness features

o o _around each demonstration by sampling from a Multivariate
Our approach to predicting human motion in collaborativgs 5;ssian distribution with covariand® ! centred at the

manipulation tasks consists of two phases (see Figlire Zemonstration (for a de nition see [7]). Note that in the
First we gather a library of collaborative motions. We thersampling phase, trajectories that collide with the environment
segment the motions into elementary reaching motions (i.gye discarded by performing collision detection.

from a resting con guration to a grasping con guration). The weights are then obtained by solving the following
These motions are then used as demonstrations by the 1@gnyex minimization problem:

algorithm to learn a cost function where these demonstrations

I1l. APPROACH

are optimal. Finlay, we use the learned cost function inside _ P e W

an interative motion-planner to predict how the human will W =argmin |09P7;

move. W i=1 e W i
k=1

A. Inverse Optimal Control algorithm whereD is the number of demonstrations alkdthe number

Human upper-body motions can be represented as timef samples per demonstration.
parametrized curves in the human's con guration space. In the original version of PIIRL, a penalty on the norm
Because these motions are inherently high-dimensional (af the weight vectorw was added to the loss function to
this work we consider 23 DoFs), global optimality is in-achieve learning with a large set of features. In this case the
tractable. Hence we use tifath Integral Inverse Reinforce- loss function is still convex but non differentiable due to the
ment Learning(PIIRL) algorithm [6], which can deal with regularization term. In order to handle this non linearity, the
high-dimensional continuous state-action spaces, and or®rthant-Wise Limited-memory Quasi-Newton [25] algorithm
requires local optimality of the demonstrated trajectories. was used, which introduces additional projection steps and

The original IOC problem solved by PIIRL aims to recoverconstrains the search to one orthant at a time. Using a
a cost function composed of a control cost term and eegularization term adds a supplementary parameter to the
general cost term (i.e., con guration dependent) that caalgorithm that can be tuned through cross validation, however
be combined with a terminal cost term, which we do notve found the results to be sparse enough without this
use here. In our formulation of the problem, we consideregularization term (see Sectipn V).



bounding spheres in the obstacles at every waypoint using
a signed Euclidean Distance Transform (EDT). Note that
the weight of this cost is manually tuned in our result
section. The second is estimated by summing the squared
accelerations along the trajectory using nite differencing.
In order to account for the other human, we sum a third cost
criterion de ned in the next section. The smoothness cost is
de ned differently from [6], it is also described in the next
section. In order to account for smoothness between each
replanning step, a buffer of con guration waypoints from
the previous replanning step is used to compute velocity,

Fig. 3. Each line corresponds to a distance used in the feature vectgtceleration and jerk at the initial con guration.
(left). 3D model of the experiment used for collision checking with hand

trajectories of the seven demonstrations used in the result section (right)C Human kinematic model description

;tl) We model the human kinematics following the recommen-

) dation for joints coordinates in [4]. The model is composed

. : : 3 of translational and rotational joints. In our experiments we

At At At only account for upper body and right arm motions, which
totals 23 DoFs. Three translations and three rotations are

Fig. 4. Division of a demonstratiory into smaller segments used for the pelvis, three rotations for the torso joint, three

translations followed by three rotations for the shoulder joint,
) ) one translation followed by three rotations for the elbow, one
B. lterative re-planning translation followed by three rotations for the wrist joint.
Iterative re-planning consists of planning iteratively while When predicting motions using STOMP the bounds of the
considering the current environment as static. It is a commdranslational joints are set using the minimal and maximal
approach to accounting for dynamic obstacles in robot maalues observed in the motion capture data. These transla-
tion planning [26], [24]. Typical approaches either maintairiions are used to compensate for errors in the computation
a tree or graph of collision-free motions, which is updated aif joint centers arising from marker placement errors. They
each replanning step, or deform the current trajectory locallgre also useful for addressing the approximations we make
given the updated positions of obstacles in the world. Oun modeling the human kinematics.
approach aims to recover a cost function that can be used i
for such a framework. Thus, once the library of collaborativd?- Feature functions
motion trajectories is gathered, it is segmented manually into We consider variants of feature functions that have been
elementary manipulation motions, which are then cut intintroduced in previous work to account for human-robot
smaller segments by advancing along each demonstration interaction constraints [27], [28], [5]. We make use of two
o as depicted in Figuré]4. The newly generated suliypes of features inspired by thEoxemicstheory [29] and
segments are added to the demonstration trajectory set. Experiments in neuroscience [1]:
each segment the initial velocity, acceleratiorgy and jerk 1) Distances between human link3he goal of these
0o, as well as the con guration of the other human and théeatures is to avoid collision risks. However, in situations
positions of obstacles are used to compute the features fequiring close interaction (e.g., reaching over the other
that segment and for its corresponding sample trajectoriegperson to access an object), two people may come close to
When planning with the human model, we make use afne another. To model this avoidance behavior we consider
the STOMP algorithm [7], which is a trajectory optimizer16 pairwise distances (see Fig{ife 3) along the arm and pelvis
that iteratively deforms an initial solution by stochasticallybetween the two humans (i,e,. wrist, elbow, shoulder, pelvis).
estimating the gradient in trajectory space. It internally 2) SmoothnessThese features ensure that the trajectory
represents the trajectory by an by n matrix, wherem remains smooth. We measure con guration and task space
is the number of DoFs and the number of waypoints. At length, squared velocities, squared accelerations and squared
each iteration, trajectories are sampled from a Multivariatierks along the trajectory using nite differencing.
Gaussian distribution with covariand® ! (see [7]), the
general and control costs of the sampled trajectories are
combined to generate the update. Thus it does not requireThe experiment we designed to gather training and test
the analytical gradient of the cost function to be knowngdata consisted of two participants standing shoulder to
and generally converges to a local minimum within 10Ghoulder parallel to a table; each working on an individual
iterations. task within a shared workspace (Figyré 5). In order to
The original STOMP algorithm presented in [7] optimizesexecute their task, the participants must place colored balls
a combination of obstacle and smoothness cost. The rsin pegs of the corresponding color, which were placed in
is estimated by summing a penetration cost for a set @f specied order (Figur¢ 5(p)). Adhesive tape was placed

IV. EXPERIMENTS



The tracker then labels each marker in a known calibration
pose wherein the subject stands upright with their hands
rested comfortably at their side. After each update from the
Vicon system, marker indices are matched by closest distance
to the previous frame. If a marker label cannot be found
within a threshold distance, it is considered occluded, and
the missing marker is lled in with data from the previous
update.

V. RESULTS

In this section we present results illustrating the capacity
of the algorithm to recover a cost function using distance be-
tween links and smoothness features. We de ne an active hu-

, ‘ man, whose motion trajectories are used as demonstrations,
L and a passive human, whose trajectories serve as contexts
(c) t=0.0 sec (d) t=0.5 sec (e) t=1.0sec for the 10C and for the iterative re-planning prediction tests.

Fig. 5. Experiment design (top) and motion capture of the task (bottom). First we validate the approach by planning with a manually
de ned weight vector and measuring the cost difference
between the initial trajectory and the recovered trajectory.

on the pegs allowing quick and easy placement. The aim dhis experiment gives us a rough estimate for tuning the

our experiment is to simulate a packing task, for instanceumber trajectory samples per demonstration in PIIRL. We
packing different chocolates into a sampler box. then evaluate the capacity of the IOC algorithm to predict
human motion by comparing the demonstrations to motions
computed using our framework (i.e., with a weight vector
The participants look at the color of the rst empty peggenerated by PIIRL on these demonstrations). We then show
in their plan, pick up a ball from the corresponding colotthe ability of the predictions to generalize to new situations
zone, and place the ball on top of the peg until all pegby performing leave-one-out testing over seven motions. We
in the plan are lled with balls (Figuré 5(p)). Following a compare the results to two baseline methods. Finally we

predetermined order of execution denies the participants tdemonstrate the usefulness of the re-planning approach on a

ability to switch tasks in mid-motion. This allows us to studyparticularly dif cult motion.

the manipulation planning component of human motion in

isolation. In future work, we will investigate our results with

a task planner and allow the pegs to be lled in any order.

A. Experiment ow

B. Recording method

In order to record these interactions, we used a Vicon
motion capture system consisting of eight Bonita cameras.
Subjects wore a suit consisting of three rigid plates and nine
markers which had been placed according to standards in

use in the eld of biomechanics [4] our full marker SetFig. 6. Three trajectories computed using the STOMP motion planner. (a)
’ Trajectory planned with a user-given weighing of features. (b) Trajectory

(seen in Figur¢ 5(F)) consists of a waist-belt and headbaRgnned with weights recovered by PIIRL. (c) Trajectory planned with a
attached to rigid objects, a marker on the back of the hangndom weight vector.

two on each side of the wrist, an elbow pad, two markers on
either side of the shoulder, and two markers straddling both [
the sternum and xyphoid process. This set of markers allows
us to easily nd the center of rotation of the wrist, elbow,
shoulder and torso. From these joint centers, we obtain a
23 DoFs con guration of the right arm and torso for each

Cost difference
®

participant using analytical inverse kinematics. ¢
Recor_dl_ng uid collaborative motion can be_dlf cult when o= = 1 =
one participant occludes the other from the Vicon cameras. A Number of samples

joint de ned by a pair of markers becomes occluded if one

‘g . 7. Average difference in cost and standard deviation, function of
of the markers becomes occluded. Upon noticing frequeﬁ\tg number of samples used by PIIRL. The difference in cost compares

occlusions of the elbow in our tests, we switched from &olutions planned on the example of Figfife 6 using the recovered weight
marker pair to an elbow pad with multiple markers. vector and the original weight vector.
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Demonstrations in red and 10 predicted motion trajectories given the start © 5 s°ss52

and goal con guration in blue. =1
I Joint center distances [ Task space Fig. 10. Average weight vector and standard deviation from the leave-one-

out testing performed over the seven motions of Fifilire 9. The distances are

= = =
un ] [ [ min [ max ]| [ [ min_| max described with active human in the bottom.

1 33.17 | 3.35 | 28.41 | 40.33 44.44 | 2.27 | 41.56 | 49.69
2 37.20 | 3.57 | 32.39 | 43.91 53.08 | 2.17 | 49.50 | 56.13
3 53.37 | 7.17 | 40.36 | 64.42 76.26 | 4.22 | 70.08 | 82.28
4 20.95 | 2.28 | 17.94 | 25.12 31.39 | 1.00 | 29.69 | 33.09 -t : : H
5 || 2159 | 184 | 17.58 | 23.75 || 2650 | 1.13 | 2503 | 2844  Predictions using our motion planning framework. The start
6 || 1012| 123 | 7.83 | 1211 || 23.62 | 0.85 | 2246 | 25.00  and goal con gurations are set to the ones from the manually
7 2556 | 5.09 | 16.91 | 34.30 4569 | 3.45 | 40.18 | 52.38 : : :
AT T 2885 1 350 2306 3484 M 4299 215 T 3978 [ 46.71 segmenteq dempnstraﬂoqs—trajectorlgs. Howgver thgy could
be set using biomechanics-based inverse-kinematics [30].
TABLE | We report the results of Dynamic Time Warping (DTW)
DTW PERFORMED BETWEEN THE SEVEN DEMONSTRATIONS AND THE ~ comparison between the resulting trajectory predictions and
TRAJECTORIES PLANNED ON A STATIC ENVIRONMENTRESULTS ARE the demonstrations and in Ta@e l.
AVERAGED OVER 10 RUNS DTW is an algorithm for measuring similarity between
two temporal sequences that may vary in time or speed. It
A. Validation relies on a distance metric between waypoints. We use two

We rst planned a trajectory using the STOMP algorithmmetrics throughogt this section: sum of joint center distanc_es
[7] in a static environment with no replanning and a use®Nd t@sk space distances. We do not report the con guration
input weight vector (see Figurg 6). We then used PIIRISPace metric as it does pot give a fair estlm_ate due to the
presented in Sectidn 1A to recover a weight vector usin\ﬁgh redundancy of our kinematic model, which represents
this planned trajectory as a demonstration. Figijre 7 sho e elbow an.d wrist as ball !0|nts. The joints considered in
the difference in cost between the “demonstrated” trajectol§!® St metric are the pelvis, torso, shoulder, elbow and
and the trajectories planned using the recovered Weigh‘fé”St' The task space metric comblnes_ Euclidean distance
as the number of samples PIIRL considers increases. \@@d @ngle between consecutive Quaternions. Figure 8, shows
use the original weight vector to assess the difference fifmonstrations 1 and 2 along with the corresponding motion
cost to measure how close the trajectories obtained und&fiectories predicted by the motion planner. Comparing
the learned weights are to the locally optimal solution. Thi@€ctories is known to be a dif cult problem. The values

results are averaged over 10 runs. As one can see, the m¥adaPle[] and visualization in Figuig 8 provide a reference

and standard deviation decrease as the number of samphdt for what DTW values we can expect for visually similar

increases, which indicates the capacity of the algorithm thaI€ctories.
recover cost functions for the type of reaching motions we

consider. These results were used to select the number f
sample trajectories, it is set to 700 in the rest of the results To evaluate the capacity of our predictions to generalize

Leave-one-out testing

presented in this section. to new situations we have performed a leave-one-out testing
o ] over the seven motions. The demonstration trajectories were
B. Predicting human motion cut into smaller segments using the procedure described

In order to validate the capacity of the approach to prediéh Section[Tll-B, with a t = 0:1sec Resulting in 33
human motion, we ran the experiment described in Sectiatemonstrations used for I0C. The obtained average, and
[[V]to gather collaborative motions. The motions were thestandard deviation values of the weights are shown in Figure
segmented manually into seven elementary manipulati@id.
motions (i.e., from a resting posture to a grasping posture). The obtained weights indicate the importance of smooth-

The seven motions start and end in the same area (seess features rather than distance features. The distances
Figure[9). We then run PIIRL without the segmenting phasare measured between the active human (on the left) and
described in Sectign 1T-B, using these seven demonstratiopassive human (on the right). All distances between the active
to generate seven weights , one for each demonstration. human's arm and passive's pelvis are important, as well as
This set of weights is then used to plan for motion-trajectorpetween the active's elbow and passive's shoulder. The high



Fig. 9. Seven demonstrations (red) along with the ten trajectories plannedasétine O(green) and with the weight vector obtained by 10C (blue).

1 Re-planning I No Re-planning
[l Joint center distances I Task space | Joint center distances [ Task space
Method min max min max min max min max

baseline 1 || 81.01 | 3.88 | 74.48 | 87.43 63.11 | 251 | 58.70 | 67.85 64.96 | 3.94 | 58.21 | 71.03 57.78 | 2.69 | 53.86 | 62.57
baseline O || 39.55 | 3.34 | 33.83 | 45.72 48.04 | 1.89 | 45.29 | 51.45 34.06 | 3.72 | 28.60 | 39.78 4581 | 1.91 | 42.60 | 49.08
With 10C 35.34 | 478 | 27.36 | 43.22 43.56 | 4.21 | 37.03 | 50.46 30.98 | 4.27 | 24.12 | 39.04 42.18 | 3.17 | 37.06 | 46.90

TABLE I
DTW PERFORMED BETWEEN THE SEVEN DEMONSTRATIONS AND THE TRAJEORIES PLANNED WITH AND WITHOUT REPLANNING, RESULTS ARE
AVERAGED OVER 10 RUNS.

weight values corresponding to the distances of the activalsdicating the validity of using IOC compared to hand tuning
pelvis and passive's body links do not impact the overalhe weight vector. This can be seen on Figydre 9, which shows
motion as participants do not move the pelvis as much as thtiee demonstrations (red), the predictions obtained with the
arm during manipulation. Note that during the sampling andaseline Omethod (green), and the predictions obtained with
planning phase the pelvis translation bounds are set to tliee 10C recovered weight vector (blue), here both types of
minimal and maximal values observed in the demonstrationgredictions use iterative re-planning.

which constrains the pelvis motions to remain within these Note that the average DTW values for the leave-one-out

bounds. test are close to the values obtained in the validation test
For comparison, trajectories were also generated using tWjoint distance score: 30.98 compared to 28.85), which shows
baseline methods: the capability of our method to generalize to new situations.

Conservative tuningbiaseline J: the squared velocities ~ The “no re-planning” approach tends to outperform the
and the 16 link distances manually tuned to the sam&e-planning” approach throughout the different methods,

value. but remains close as indicated by the task space values
Aggressive tuning l{aseline : the squared velocities comparison when using the recovered_cost funct_ion: 43.56
without considering the distances between links. and 42.18 (stddev 4.21 and 3.17) with and without re-

Table [T summarizes the DTW similarity values usingP/anning respectively.
the joint center distance and the task space metric, for
methods with and without replanning. DTW is compute ) )
between the respective demonstrations (i.e., from which the TO show the capacity of the re-planning approach to

start and goal con gurations are extracted) and the plann&@tter predict human motion in more dif cult situations we
trajectories. In the “no re-planning” version STOMP onlyhave selected a motion where the passive human interferes

considers the initial con guration of the passive human, angigni cantly with the active human while he/she is reaching.
thus the active human motion is not updated according tbhe weight vector is obtained by training with all seven
the passive human motion.

jﬂ. Signi cant interference

Trajectories planned witlbaseline Oand with the 10C Type | | min | max
recovered weights have lower DTW scores than the ones _ Joint center distances
. . s . No re-planning 52.89 | 9.66 | 39.94 | 67.09
planned withbaseline 1 this is consistent throughout both With re-planning || 44.91 ‘ 6.62 ‘ 36.15 ‘ 5520
metrics and with or without replanning. Trajectories planned Task space
: : . f . No re-planning 49.22 | 825 | 37.75 | 63.78
with baseline Osometimes outperform trajectories planned With re-planning || 36.20 ‘ 813 ‘ 5481 ‘ S0.77

with the IOC recovered weights, which can be explained

by the sparsity of the distance weights recovered by PIIRL TABLE Il

(baseline 0does not consider distances between links at all)pTW PERFORMED BETWEEN THE DEMONSTRATION OFIGURE[LIIAND
Nevertheless, the average DTW values of the IOC recoverethe TRAJECTORIES PLANNED RESULTS ARE AVERAGED OVERLO RUNS
cost functions version are lower than theseline Oversion’'s,



(4]

(5]

(6]
(7]

Fig. 11. A demonstration of the benets of re-planning on a dif cult (8]
example. Original motion (red) and predicted motions with (blue) and
without (green) re-planning. ]

(10]
motions used in the leave-one-out phase, but does not include
the “demonstration” from which we extract the start an 1]
end con gurations for prediction. The motions obtained with
and without re-planning are shown in FigJre] 11, and the
DTW results are shown in TabJelll. In this case, using re,
planning better predicts the active human motion because
the trajectories generated with no re-planning collide with
the arm of the passive human. This result is underscored
the smaller average DTW values found for the joint center
distances and task space metric. 14

VI. CONCLUSION AND FUTURE WORK
15
We have presented an important step toward predictin[g]
how humans move when collaborating on a manipulatio
task by applying inverse optimal control to data gathere@
from motion capture of collaborative manipulation in a
shared workspace. (17]
To demonstrate the feasibility and ef cacy of our approacipg
we have provided test results consisting of learning a cost
function, and comparing the planned motions using thE®
learned weights to the demonstrations using Dynamic Timgg;
Warping (DTW). The approach based on Inverse Optimal
Control (IOC) allows us to nd a cost function balancing
different features that outperforms hand-tuning of the coé%l]
function in terms of task space and joint center distance
DTW. The method presented in this paper could be extendé&d
to allow learning of a cost function for robot motion planning
of human-robot collaborative manipulation tasks where thig3]
human and the robot manipulate objects simultaneously in
close proximity. [24]
Future work concerns enhancing the type of features to be
taken into account to improve the prediction, and retargetir{§5
these features for motion planning on a PR2 robot. [26]
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