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Outline

® why the relation between statistics and causality is tricky

® causal inference using conditional independences
(statistical and general)

© causal inference using other properties of joint
distributions

O causal inference in time series, quantifying causal
strength

©® why causal problems matter for prediction



intuitive approach to distinguishing cause and effect

new foundations of causal inference
additive noise based causal inference

information-geometric causal inference
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What's the cause and what's the effect?
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Idea of new inference rules

Consider two decompositions of P(X, Y):

P(X)P(Y|X) or P(Y)P(X]Y),

e does one of it look simpler than the other?

o if yes, assume this to be the causal direction

Implementing this idea is a challenging research program:
e defining simplicity /complexity
e estimating it from finite data

e justifying why this is related to causality
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Particularly nice toy examples (1)

Janzing & Schélkopf: Causal inference using the algorithmic Markov condition, IEEE TIT 2010
Let X be binary and Y real-valued. Observe that both
P(Y|X =0) and P(Y|X = 1) are Gaussians with different mean:

ply:x=0)

ply.x=1)

X — Y more plausible:

e simple effect of X: shift the mean of Y

e if Y was the cause it would be implausible that conditioning
on X separates the two modes of P(Y')
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Particularly nice toy examples (2)

Let P(Y) be Gaussian and X = 1 above a certain threshold yp:

ply.x=1)

Y — X more plausible:

e simple effect of Y: set X via a threshold

e P(Y|X =0) and P(Y|X = 1) look strange (truncated
Gaussians)
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Philosophical basis for new methods

e so far, it seems arbitrary how to defined simplicity /complexity
o we will recall and criticise the justification of faithfulness

o we replace faithfulness with a principle that we consider more
fundamental

13



Justifying faithfulness

Unfaithful distributions occur with probability zero if

e nature chooses each P(X;|PA;) independently

e each P(X;|PA;) is chosen from a probability density in
parameter space (e.g. uniform distribution)

here the parameter space of each conditional is a subset of R¥
with k := {x;}{rai}
(see next slide)

C. Meek: Strong completeness and faithfulness in Bayesian networks. (UAI 1995)
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What we mean by parameter space

®/\@g
Consider the DAG with binary Z, X, Y.

e P(Z) is described by the value P(Z = 1)
(parameter space: [0, 1])
e P(X|Z) is described by the values
P(X =1|Z=0),P(X=1|Z=1)
(parameter space: [0,1]?)
e P(Y|X,Z) is described by the values P(Y = 1|X =i,Z =)
with 7, j € {0,1}
(parameter space: [0, 1]%)

in total: 7 free parameters, set of parameters that induce
unfaithful distributions is a lower dimensional submanifold in this
7-dimensional space.
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However, we will argue...

e There are cases of obvious parameter tuning that do not
generate additional independences
(= faithfulness is too weak)

o Not every violation of faithfulness is due to parameter tuning
since we do not believe in densities on the parameter space
(= faithfulness is too strong)
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recall the motivating example:

ply.x=0) plyx=1)

/

y

we reject X — Y not only because Y — X yields simpler
explanations for the shape of the distribution, but
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For X — Y generation of P(X, Y) requires tuning

look what happens if we change P(X):

p(y,x=0)

Hence, reject X — Y because it requires tuning of P(X) relative
to P(Y|X). Faithfulness would accept both causal directions.
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Why faithfulness is too strong

Consider deterministic relations

Y = £(X)

e unfaithful because... (homework for today)
e but there is no adjustment between P(X), P(Y|X), P(Z|Y)
e only P(Y|X) is 'non-generic’

We don’t want to reject non-generic conditionals, we only want to
reject non-generic relations between conditionals
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Algorithmic independence of conditionals

The shortest description of P(Xi,...,X,) is given by separate
descriptions of P(X;|PA;).

(Here, description length = Kolmogorov complexity)

Janzing, Schélkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010).

Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds &

Machines (2012).
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Recall: causal Principle

If two strings x and y are algorithmically dependent then either

e every algorithmic dependence is due to a causal relation

e algorithmic analog to Reichenbach’s principle of common
cause

e distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Scholkopf IEEE TIT 2010
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Apply the causal principle to conditionals
K(P(X;j|PA))) denotes the length of the shortest program
computing P(x;j|pa;j) from (x;, pa;).

e If nature chooses each mechanism P(Xj|PA;) independently
they are algorithmically independent, e.g.,

I(P(X{|PA) : P(X1|PA1), P(Xa|PAy),...) 0 V.

e equivalent to

K(P(X1,..., X)) = zn: K(P(Xj|PA;))
j=1

(shortest description of the joint is given by separate
descriptions of the causal conditionals)
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If X — Y then
I(P(X): P(Y]X))Z0

P(X) contains no information about P(Y|X) and vice versa.
(note: here we are not talking about information in the sense of
Shannon mutual information)
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Equivalent formulation

Describing both P(X) and P(Y|X) describes P(X, Y).
Moreover, describing P(X, Y) describes P(X) and P(Y|X).
Therefore,

K(P(X), P(Y|X)) £ K(P(X,Y)).
Thus,
K(P(X)) + K(P(Y|X)) = K(P(X), P(Y|X)),
is equivalent to
K(P(X))+ K(Y|X)) £ K(P(X,Y)).

Hence, the algorithmic independence of P(X) and P(Y|X) is
equivalent to

K(P(X,Y)) = K(P(X)) + K(P(Y|X)).
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Note:
K(P(X,Y)) £ K(P(X))+ K(P(Y|X)).

implies
K(P(X)) + K(P(Y|X)) < K(P(Y)) + K(P(X]Y)) .

but not vice versa.
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Revisiting the motivating example

y

Knowing P(Y|X), there is a short description of P(X), namely

"the unique distribution for which Y P(Y|x)P(x) is Gaussian'.
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Although Kolmogorov complexity is uncomputable...

we apply the principle of algorithmically independent conditionals:

¢ find notions of dependence of conditionals that capture
essential aspects

e use it as a foundation /justification of new inference rules
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...that can also be justified by our philosophical principle

29



30



Linear non-Gaussian models

Kano & Shimizu 2003

Theorem

Let X L Y. Then P(X,Y) admits linear models in both
directtion, i.e.,

Y = aX+ Uy with Uy 1L X
X = BY+UxwithlUx LY,

if and only if P(X,Y) is bivariate Gaussian

e if P(X,Y) is non-Gaussian, there can be a linear model in at
most one direction.

e LINGAM: causal direction is the one that admits a linear
model
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Let X and Uy be uniformly distributed. Then Y = aX 4+ Uy
induces uniform distribution on a diamond (left):

uniformly distributed Y and Ux with X = Y + Ux induces the
diamond on the right.
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Let Xi,...,X, be independent random variables and
Y1 = aiXi+---+anX,
Yo == b Xi+---+bpX,

be independent. Then each X; with a;b; # 0 is Gaussian.

proof involves Fourier transforms of probability distributions



Let P(X,Y) = P(X)P(Y) be uniform on [0,1]?

X ‘ X
rotating the axis by a generic angle generates dependences

between X and Y (although they are still uncorrelated)
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Proof of Theorem 1

Assume independence of Y — aX and X.
Assume independence of X — 8Y and Y.

Set

X1 = X

Xo = Y —-—aX.
Set

Yl =Y

Y, = X-—-8Y.

Then Y7 and Y5 can be written as linear combinations of Xj
and Xs. If X7 or X5 are non-Gaussian, then Y7 and Y5 cannot
be independent.



Jutten & Hérault 1991

Let U := (Us,...,U,) be independent non-Gaussian random
variables and X := AU where A is an n x n matrix. Then U can be
determined from X up to permutation and rescaling of components
U;.

follows from Darmois-Skitovic



Application: blind source separation

e.g. Hyvéarinen 1998

e n microphones record n speakers simultaneously.

e due to the different distance, each speaker j occurs with
different weight A;; in microphone i

ICA recovers the signal of each speaker
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Applications of LINGAM

applications in brain research (e.g. fMRI data) are considered
promising by several people (see e.g. talks of Hyvarinen)
supported by positive results on simulated data where

LINGAM performed better than traditional methods like
Granger causality )

not easy to find data with known ground truth
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LINGAM as a special case of ICA Shimizu et al. 2006

Let P(Xi,...,X,) be generated by the linear structural equation

X; = Z b;iX; + U; with independent U; ,
j

where the set of non-zero bj; define a DAG G. Then G can be
uniquely identified from P(X,..., X,):

write structural equation as X = BX + U

hence (1-B)X=U

rewrite as X = (1 — B)~!U

define A := (1 — B)~! to obtain usual ICA problem

no ambiguity regarding permuting and scaling U;: all diagonal
entries of 1 — B are 1 (B is lower triangular with respect to an
appropriate ordering of nodes, therefore inverse is easy to see)

compute B =1 — A1 to recover the structural equation
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Distinguishing cause and effect via ICA/LINGAM

e Assume

X = Ux
Y = aX+Uy,

where Ux and Uy are independent 'sources’.
e Hence,

X = Ux
Y = aUx+ Uy

e The cause X contains only one source and the effect Y
contains both sources.
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Analogy to blind source separation problem

~

1 Q

U, ‘ X
o )
1 = Y

U, \

e The cause is like a microphone that receives only the signal

from 1 speaker

e The effect receives signal from both speakers

o |CA can easy decide which one is which
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Non-linear additive noise based INference toyer, saning, peters, sehskopt, 2008

e Assume that the effect is a function of the cause up to an
additive noise term that is statistically independent of the
cause:

Y=fX)+E with ELX

y T e **i o f(X)
a8

o there will, in the generic case, be no model
X=g(Y)+E with ELY,

even if f is invertible! (proof is non-trivial)

42



Y =f(X,E) with ELX
can model any conditional P(Y|X)

Y=f(X)+E with ELX
restricts the class of possible P(Y|X)

43



Intuition

e additive noise model from X to Y imposes that the width of
noise is constant in x.

e for non-linear f, the width of noise wont't be constant in y at
the same time.
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Causal inference method:

Prefer the causal direction that can better be fit with an
additive noise model.

Implementation:

e Compute a function f as non-linear regression of Y on X, i.e.,
f(x) == E(Y|x).

o Compute the residual
E:=Y —f(X)

e check whether E and X are statistically independent
(uncorrelated is not sufficient, method requires tests that are
able to detect higher order dependences)
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Why f is given by the conditional expectation

e If Y — f(X) should be independent of X, its expectation
needs to be independent of X, i.e.,

E[Y — f(x)|x]

needs to be constant in x.

e Assume E[Y — f(x)|x] = 0 without loss of generality because
this changes only the offset of the noise

e Hence, E[Y|x] = f(x).
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Justifying additive noise based causal inference

Assume Y = f(X) + E with E 1L X

e Then P(Y) and P(X]Y) are related:

P 1ogply) =~ tog p(xly) — ———2_log p(xly)

= 88722 log p(y) can be computed from p(x|y) knowing f’(xp)
for one specific xg

e Given P(X]Y), P(Y) has a short description.

e We reject Y — X provided that P(Y) is complex

Janzing, Steudel, OSID (2010)
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Cause-effect pairs

e http://webdav.tuebingen.mpg.de/cause-effect/

e contains currently 86 data sets with X, Y where we believe to
know whether X — Y or Y — X, e.g.

day in the year — temperature
age of snails — length
drinking water access — infant mortality rate
open http connections — bytes sent
outside room temperature — inside room temperature
age of humans — wage per hour

e goal: collect more pairs, diverse domains

e ground truth should be obvious to non-experts
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Additive noise based inference...

about 70% correct decisions for 70 cause-effect pairs with
known ground truth

fraction even better if we allow “no decision”

we do not claim that noise is always additive in real life, but if
it is for one direction this is unlikely to be the wrong one

generalization to n variables outperformed PC

(Peters, Mooij, Janzing, Schélkopf UA/I 2011)

generalization to time series

(Peters, Janzing, Schélkopf NIPS 2013)

note the paradigm shift: a model is good if the noise is
independent, not if the noise is small
(if it's dependent it may not be noise?)
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e Step 1: find a causal order

e Step 2: drop unnecessary edges in the corresponding complete
DAG
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Step 1: find the causal order

i.e., find m € S, such that there is no arrow Xy — Xy for
(i) > n(j)

e compute regression for each Xj:
)<j = f(X17 7)<j*17)<j+17"‘ 7Xn) + E_[

e check dependence between E; and X;
e let (n) be the node for which the dependence is minimal

e drop X;(,) and repeat the procedure with n — 1 variables
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Step 2: remove unnecessary edges

Apply the following procedure to each node X(j:
@ for each X, (;) let the parents be all its predecessors w.r.t.
order 7

@® check each parent whether removing it still yields independent
noise

© repeat 2 until no further parents can be removed

note: step 2 performs a conditional independence test. The
additive noise assumption reduces it to testing independence of
error term.
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Application to real data

A: altitude of 349 places in Germany
e T average temperature

D duration of sunshine
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Inferring confounders with additive noise

X = f&x(T)+ Ux
Y = fy(T)+ Uy

with jointly independent T, Ux, Uy.
note: contains X — Y by setting fx = id and Ux = 0. Similar for
Y — X.

conjecture: fx, fy can be inferred up to bijective transformations
of T

argument: suggested by a theoretical result with small noise

interpretation: constructing fx, fy amount to distinguishing
between the three cases

X =Y X+—~T-=Y X+<Y.
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Intuition

e without noise, the points describe the line (fx(t), fy(t))

A

e independent noise Ux and Uy is added in X and Y directions
e original line can be obtained by deconvolution with an
appropriate product distribution
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Let P(X,Y) be generated by

Y = g(F(X)+ U) with U L X.

Then there is in the generic case no triple g, f, U such that

X=g(f(Y)+0U) withOLY
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employing properties of the noise
is not the only way

of inferring causal directions
— look at the noiseless case...
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| nferri ng determ | n IStiC Ca Usa I |ty Daniusis, Janzing,... UAI 2010, Janzing et al. Al 2012

e Problem: infer whether Y = f(X) or X = f~1(Y) is the right
causal model

e Idea: if X — Y then f and the density px are chosen
independently “by nature”

e Hence, peaks of px do not correlate with the slope of f

e Then, peaks of py correlate with the slope of !

y
p(y) f(x)
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Formalization

Let f be a monotonously increasing bijection of [0, 1]

e Postulate:

1 1
/ log f'(x)p(x)dx = / log f'(x)dx (approximately)
0 0

e ldea: averaging log of slope of f over p is the same as
averaging over uniform distribution

e Implication:

1 1
/Iogfl'p(y)dyZ/ log £~ (y)dy
0 0
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Testable implication / inference rule

e If X = Y then
/ og|7()lp(x)ax < [ Tog |7~ (1)]p(y)y

(high density p(y) tends to occur at points with large slope)

e empirical estimator

6X—>Y = — ZI

Yi+1 — Y
Xj+1 — XJ

|~ [ 1og|(lp(x)ax

e infer X — Y whenever

Cxoy < Cyox .

“information geometric causal inference (IGCI)”
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Experiments

Rhine data:

e water levels at 22 cities measured in 15 minutes intervals from
1990 to 2008,
e pick 231 random pairs and decide which one is “upstream”

e 87% correct decisions

Note: IGCI actually not suitable for non-deterministic relations yet
although several positive results have been reported
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@ Additive noise models:
Let X be uniformly distributed on [-1,1] and Y = X2. Show
that there is no function g such that

X=g(Y)+U with ULY
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Exercises

©® Darmois-Skitovic:
Let P(X,Y) be the uniform distribution on the below
diamond.

e Show that X and Y are uncorrelated.
e Show that X L Y.
Convincing arguments are at least as good as calculations! (no

lengthy calculations necessary)
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Exercises

O Information-geometric causal inference:
Let f be the following bijection of the interval [0, 1].

i

(1.1)

Let X be uniformly distributed on [0, 1], i.e., p(X) =1 (w.r.t.

the Lebesgue measure) and Y = f(X).

e Compute the density p(Y) w.r.t. the Lebesgue measure.
e Argue in what sense p(Y') contains information about .

65



