# Inferring causality from passive observations

### Dominik Janzing

#### Max Planck Institute for Intelligent Systems Tübingen, Germany

### 22.-28. August 2014



# Outline

- **()** why the relation between statistics and causality is tricky
- causal inference using conditional independences (statistical and general)
- causal inference using other properties of joint distributions
- causal inference in time series, quantifying causal strength
- **6** why causal problems matter for prediction

# Part 3: causal inference using other properties of joint distributions

- intuitive approach to distinguishing cause and effect
- new foundations of causal inference
- additive noise based causal inference
- information-geometric causal inference

### Intuitive approach to distinguishing cause and effect









Y (Solar Radiation)  $\rightarrow$  X (Temperature)





 $X (Age) \rightarrow Y (Income)$ 

Consider two decompositions of P(X, Y):

P(X)P(Y|X) or P(Y)P(X|Y),

- does one of it look simpler than the other?
- if yes, assume this to be the causal direction

Implementing this idea is a challenging research program:

- defining simplicity/complexity
- estimating it from finite data
- justifying why this is related to causality

# Particularly nice toy examples (1)

Janzing & Schölkopf: Causal inference using the algorithmic Markov condition, IEEE TIT 2010 Let X be binary and Y real-valued. Observe that both P(Y|X = 0) and P(Y|X = 1) are Gaussians with different mean:



 $X \rightarrow Y$  more plausible:

- simple effect of X: shift the mean of Y
- if Y was the cause it would be implausible that conditioning on X separates the two modes of P(Y)

# Particularly nice toy examples (2)

Let P(Y) be Gaussian and X = 1 above a certain threshold  $y_0$ :



### $Y \rightarrow X$ more plausible:

- simple effect of Y: set X via a threshold
- P(Y|X = 0) and P(Y|X = 1) look strange (truncated Gaussians)

### Philosophical basis for new methods

- so far, it seems arbitrary how to defined simplicity/complexity
- we will recall and criticise the justification of faithfulness
- we replace faithfulness with a principle that we consider more fundamental

# Justifying faithfulness

Unfaithful distributions occur with probability zero if

- nature chooses each  $P(X_j|PA_j)$  independently
- each P(X<sub>j</sub>|PA<sub>j</sub>) is chosen from a probability density in parameter space (e.g. uniform distribution)

here the parameter space of each conditional is a subset of  $\mathbb{R}^k$  with  $k := \{x_j\}^{\{pa_j\}}$  (see next slide)

C. Meek: Strong completeness and faithfulness in Bayesian networks. (UAI 1995)

### What we mean by parameter space



Consider the DAG

with binary Z, X, Y.

- P(Z) is described by the value P(Z = 1) (parameter space: [0, 1])
- P(X|Z) is described by the values P(X = 1|Z = 0), P(X = 1|Z = 1)(parameter space:  $[0, 1]^2$ )
- P(Y|X,Z) is described by the values P(Y = 1|X = i, Z = j) with i, j ∈ {0,1} (parameter space: [0,1]<sup>4</sup>)

in total: 7 free parameters, set of parameters that induce unfaithful distributions is a lower dimensional submanifold in this 7-dimensional space.  There are cases of obvious parameter tuning that do not generate additional independences
 (⇒ faithfulness is too weak)

 Not every violation of faithfulness is due to parameter tuning since we do not believe in *densities* on the parameter space (⇒ faithfulness is too strong)

### Why faithfulness is too weak

### recall the motivating example:



we reject  $X \rightarrow Y$  not only because  $Y \rightarrow X$  yields simpler explanations for the shape of the distribution, but

### For $X \to Y$ generation of P(X, Y) requires tuning

look what happens if we change P(X):



Hence, reject  $X \to Y$  because it requires tuning of P(X) relative to P(Y|X). Faithfulness would accept both causal directions.

### Why faithfulness is too strong

Consider deterministic relations

$$X \longrightarrow Y \longrightarrow Z$$
$$Y = f(X)$$

- unfaithful because ... (homework for today)
- but there is no adjustment between P(X), P(Y|X), P(Z|Y)
- only P(Y|X) is 'non-generic'

We don't want to reject non-generic conditionals, we only want to reject non-generic **relations** between conditionals

New foundations of new inference rules

### Algorithmic independence of conditionals

The **shortest** description of  $P(X_1, ..., X_n)$  is given by **separate** descriptions of  $P(X_j | PA_j)$ .

(Here, description length = Kolmogorov complexity)

Janzing, Schölkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010). Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds & Machines (2012).

# Recall: causal Principle

If two strings x and y are algorithmically dependent then either



- every algorithmic dependence is due to a causal relation
- algorithmic analog to Reichenbach's principle of common cause
- distinction between 3 cases: use conditional independences on more than 2 objects

# Apply the causal principle to conditionals

 $K(P(X_j|PA_j))$  denotes the length of the shortest program computing  $P(x_j|pa_j)$  from  $(x_j, pa_j)$ .

• If nature chooses each mechanism  $P(X_j|PA_j)$  independently they are algorithmically independent, e.g.,

$$I(P(X_j|PA_j): P(X_1|PA_1), P(X_2|PA_2), \dots) \stackrel{+}{=} 0 \quad \forall j.$$

• equivalent to

$$K(P(X_1,\ldots,X_n)) \stackrel{+}{=} \sum_{j=1}^n K(P(X_j|PA_j))$$

(shortest description of the joint is given by separate descriptions of the causal conditionals)

### **Bivariate case**

### If $X \to Y$ then

$$I(P(X):P(Y|X))\stackrel{+}{=} 0$$

P(X) contains no information about P(Y|X) and vice versa. (note: here we are not talking about information in the sense of Shannon mutual information)

# Equivalent formulation

- Describing both P(X) and P(Y|X) describes P(X, Y).
- Moreover, describing P(X, Y) describes P(X) and P(Y|X).
- Therefore,

$$K(P(X), P(Y|X)) \stackrel{+}{=} K(P(X, Y)).$$

• Thus,

$$K(P(X)) + K(P(Y|X)) \stackrel{+}{=} K(P(X), P(Y|X)),$$

is equivalent to

$$K(P(X)) + K(Y|X)) \stackrel{+}{=} K(P(X,Y)).$$

• Hence, the algorithmic independence of P(X) and P(Y|X) is equivalent to

$$K(P(X,Y)) \stackrel{+}{=} K(P(X)) + K(P(Y|X)).$$

### Relation to Occam's Razor

Note:

$$K(P(X,Y)) \stackrel{+}{=} K(P(X)) + K(P(Y|X)).$$

implies

$$K(P(X)) + K(P(Y|X)) \le K(P(Y)) + K(P(X|Y)).$$

but not vice versa.

### Revisiting the motivating example



Knowing P(Y|X), there is a short description of P(X), namely 'the unique distribution for which  $\sum_{x} P(Y|x)P(x)$  is Gaussian'.

we apply the principle of algorithmically independent conditionals:

- find notions of dependence of conditionals that capture essential aspects
- use it as a foundation/justification of new inference rules

### Some new inference rules...

### ...that can also be justified by our philosophical principle

Additive noise based causal inference

### Linear non-Gaussian models

Kano & Shimizu 2003

### Theorem

Let  $X \not\perp Y$ . Then P(X, Y) admits linear models in both directtion, i.e.,

$$Y = \alpha X + U_Y \text{ with } U_Y \perp X$$
  
$$X = \beta Y + U_X \text{ with } U_X \perp Y$$

if and only if P(X, Y) is bivariate Gaussian

- if P(X, Y) is non-Gaussian, there can be a linear model in at most one direction.
- LINGAM: causal direction is the one that admits a linear model

### Intuitive example:

Let X and  $U_Y$  be uniformly distributed. Then  $Y = \alpha X + U_Y$  induces uniform distribution on a diamond (left):



uniformly distributed Y and  $U_X$  with  $X = \beta Y + U_X$  induces the diamond on the right.

### Proof via Darmois-Skitovic

# Theorem Let $X_1, \ldots, X_n$ be independent random variables and $Y_1 := a_1X_1 + \cdots + a_nX_n$ $Y_2 := b_1X_1 + \cdots + b_nX_n$ be independent. Then each $X_i$ with $a_ib_i \neq 0$ is Gaussian.

proof involves Fourier transforms of probability distributions

### Example for Darmois-Skitovic

Let P(X, Y) = P(X)P(Y) be uniform on  $[0, 1]^2$ 



rotating the axis by a generic angle generates dependences between X and Y (although they are still uncorrelated)

### Proof of Theorem 1

- Assume independence of  $Y \alpha X$  and X.
- Assume independence of  $X \beta Y$  and Y.
- Set

$$\begin{array}{rcl} X_1 & := & X \\ X_2 & := & Y - \alpha X \end{array}$$

• Set

$$\begin{array}{rcl} Y_1 & := & Y \\ Y_2 & := & X - \beta Y \, . \end{array}$$

 Then Y<sub>1</sub> and Y<sub>2</sub> can be written as linear combinations of X<sub>1</sub> and X<sub>2</sub>. If X<sub>1</sub> or X<sub>2</sub> are non-Gaussian, then Y<sub>1</sub> and Y<sub>2</sub> cannot be independent. Jutten & Hérault 1991

### Theorem

Let  $\mathbf{U} := (U_1, \ldots, U_n)$  be independent non-Gaussian random variables and  $\mathbf{X} := A\mathbf{U}$  where A is an  $n \times n$  matrix. Then  $\mathbf{U}$  can be determined from  $\mathbf{X}$  up to permutation and rescaling of components  $U_j$ .

follows from Darmois-Skitovic

### Application: blind source separation

e.g. Hyvärinen 1998

- *n* microphones record *n* speakers simultaneously.
- due to the different distance, each speaker *j* occurs with different weight A<sub>ij</sub> in microphone *i*



ICA recovers the signal of each speaker

# Applications of LINGAM

- applications in brain research (e.g. fMRI data) are considered promising by several people (see e.g. talks of Hyvärinen)
- supported by positive results on simulated data where LINGAM performed better than traditional methods like Granger causality )
- not easy to find data with known ground truth

### LINGAM as a special case of ICA

Let  $P(X_1, \ldots, X_n)$  be generated by the linear structural equation

$$X_i = \sum_j b_{ij} X_j + U_i$$
 with independent  $U_i$  ,

where the set of non-zero  $b_{ij}$  define a DAG G. Then G can be uniquely identified from  $P(X_1, \ldots, X_n)$ :

- write structural equation as  $\mathbf{X} = B\mathbf{X} + \mathbf{U}$
- hence  $(1 B)\mathbf{X} = \mathbf{U}$
- rewrite as  $\mathbf{X} = (1 B)^{-1} \mathbf{U}$
- define  $A := (1 B)^{-1}$  to obtain usual ICA problem
- no ambiguity regarding permuting and scaling U<sub>j</sub>: all diagonal entries of 1 – B are 1 (B is lower triangular with respect to an appropriate ordering of nodes, therefore inverse is easy to see)
- compute  $B = 1 A^{-1}$  to recover the structural equation

# Distinguishing cause and effect via ICA/LINGAM

### Assume

$$\begin{array}{rcl} X &=& U_X \\ Y &=& \alpha X + U_Y \,, \end{array}$$

where  $U_X$  and  $U_Y$  are independent 'sources'.

• Hence,

$$X = U_X$$
  
$$Y = \alpha U_X + U_Y$$

• The cause X contains only one source and the effect Y contains both sources.

# Analogy to blind source separation problem



- The cause is like a microphone that receives only the signal from 1 speaker
- The effect receives signal from both speakers
- ICA can easy decide which one is which

### Non-linear additive noise based inference Hoyer, Janzing, Peters, Schölkopf, 2008

 Assume that the effect is a function of the cause up to an additive noise term that is statistically independent of the cause:

$$Y = f(X) + E$$
 with  $E \perp X$ 



• there will, in the generic case, be no model

$$X = g(Y) + \tilde{E}$$
 with  $\tilde{E} \perp Y$ ,

even if f is invertible! (proof is non-trivial)

### Note...

$$Y = f(X, E)$$
 with  $E \perp X$  can model any conditional  $P(Y|X)$ 

$$Y = f(X) + E$$
 with  $E \perp X$ 

restricts the class of possible P(Y|X)

# Intuition

- additive noise model from X to Y imposes that the width of noise is constant in x.
- for non-linear f, the width of noise wont't be constant in y at the same time.



# Causal inference method:

Prefer the causal direction that can better be fit with an additive noise model.

Implementation:

- Compute a function f as non-linear regression of Y on X, i.e.,
  f(x) := E(Y|x).
- Compute the residual

$$E := Y - f(X)$$

• check whether *E* and *X* are statistically independent (uncorrelated is not sufficient, method requires tests that are able to detect higher order dependences)

# Why f is given by the conditional expectation

If Y - f(X) should be independent of X, its expectation needs to be independent of X, i.e.,

$$\mathbb{E}[Y - f(x)|x]$$

needs to be constant in x.

 Assume 𝔅[Y − f(x)|x] = 0 without loss of generality because this changes only the offset of the noise

• Hence,  $\mathbb{E}[Y|x] = f(x)$ .

### Justifying additive noise based causal inference

Assume Y = f(X) + E with  $E \perp X$ 

• Then P(Y) and P(X|Y) are related:

$$\frac{\partial^2}{\partial y^2} \log p(y) = -\frac{\partial^2}{\partial y^2} \log p(x|y) - \frac{1}{f'(x)} \frac{\partial^2}{\partial x \partial y} \log p(x|y).$$

 $\Rightarrow \frac{\partial^2}{\partial y^2} \log p(y) \text{ can be computed from } p(x|y) \text{ knowing } f'(x_0)$  for one specific  $x_0$ 

- Given P(X|Y), P(Y) has a short description.
- We reject  $Y \to X$  provided that P(Y) is complex

Janzing, Steudel, OSID (2010)

# Cause-effect pairs

- http://webdav.tuebingen.mpg.de/cause-effect/
- contains currently 86 data sets with X, Y where we believe to know whether X → Y or Y → X, e.g.

| day in the year          | $\rightarrow$ | temperature             |
|--------------------------|---------------|-------------------------|
| age of snails            | $\rightarrow$ | length                  |
| drinking water access    | $\rightarrow$ | infant mortality rate   |
| open http connections    | $\rightarrow$ | bytes sent              |
| outside room temperature | $\rightarrow$ | inside room temperature |
| age of humans            | $\rightarrow$ | wage per hour           |

- goal: collect more pairs, diverse domains
- ground truth should be obvious to non-experts

## Additive noise based inference...

- about 70% correct decisions for 70 cause-effect pairs with known ground truth
- fraction even better if we allow "no decision"
- we do not claim that noise is always additive in real life, but if it is for one direction this is unlikely to be the wrong one
- generalization to *n* variables outperformed PC

(Peters, Mooij, Janzing, Schölkopf UAI 2011)

generalization to time series

(Peters, Janzing, Schölkopf NIPS 2013)

 note the paradigm shift: a model is good if the noise is independent, not if the noise is small (if it's dependent it may not be noise?)

Peters et al. 2014

- Step 1: find a causal order
- Step 2: drop unnecessary edges in the corresponding complete DAG

i.e., find  $\pi \in S_n$  such that there is no arrow  $X_{\pi(i)} o X_{\pi(j)}$  for  $\pi(i) > \pi(j)$ 

• compute regression for each X<sub>j</sub>:

$$X_j = f(X_1,\ldots,X_{j-1},X_{j+1},\ldots,X_n) + E_j$$

- check dependence between  $E_j$  and  $X_j$
- let  $\pi(n)$  be the node for which the dependence is minimal
- drop  $X_{\pi(n)}$  and repeat the procedure with n-1 variables

Apply the following procedure to each node  $X_{\pi(j)}$ :

- for each  $X_{\pi(j)}$  let the parents be all its predecessors w.r.t. order  $\pi$
- e check each parent whether removing it still yields independent noise
- **③** repeat 2 until no further parents can be removed

note: step 2 performs a conditional independence test. The additive noise assumption reduces it to testing independence of error term.

### Application to real data

- A: altitude of 349 places in Germany
- T average temperature
- D duration of sunshine



the method preferred  $T \leftarrow A \rightarrow D$ 

### Inferring confounders with additive noise

$$X = f_X(T) + U_X$$
  
$$Y = f_Y(T) + U_Y$$

with jointly independent T,  $U_X$ ,  $U_Y$ . **note:** contains  $X \to Y$  by setting  $f_X = id$  and  $U_X = 0$ . Similar for  $Y \to X$ .

**conjecture:**  $f_X, f_Y$  can be inferred up to bijective transformations of T

argument: suggested by a theoretical result with small noise

**interpretation:** constructing  $f_X, f_Y$  amount to distinguishing between the three cases

$$X \to Y$$
  $X \leftarrow T \to Y$   $X \leftarrow Y$ .

### Intuition

• without noise, the points describe the line  $(f_X(t), f_Y(t))$ 



- independent noise  $U_X$  and  $U_Y$  is added in X and Y directions
- original line can be obtained by deconvolution with an appropriate product distribution

Let P(X, Y) be generated by

$$Y = g(f(X) + U)$$
 with  $U \perp X$ .

Then there is in the generic case no triple  $\tilde{g}, \tilde{f}, \tilde{U}$  such that

$$X = \tilde{g}(\tilde{f}(Y) + \tilde{U})$$
 with  $\tilde{U} \perp Y$ .



### employing properties of the noise

is not the only way

of inferring causal directions

 $\rightarrow$  look at the noiseless case...

### Information-geometric causal inference

# Inferring deterministic causality

- Problem: infer whether Y = f(X) or  $X = f^{-1}(Y)$  is the right causal model
- Idea: if X → Y then f and the density p<sub>X</sub> are chosen independently "by nature"
- Hence, peaks of  $p_X$  do not correlate with the slope of f
- Then, peaks of  $p_Y$  correlate with the slope of  $f^{-1}$



### Formalization

Let f be a monotonously increasing bijection of [0, 1]

• Postulate:

$$\int_0^1 \log f'(x) p(x) dx = \int_0^1 \log f'(x) dx \text{ (approximately)}$$

- **Idea:** averaging log of slope of *f* over *p* is the same as averaging over uniform distribution
- Implication:

$$\int_0^1 \log f^{-1'} p(y) dy \ge \int_0^1 \log f^{-1'}(y) dy$$

### Testable implication / inference rule

• If 
$$X \to Y$$
 then

$$\int \log |f'(x)| p(x) dx \leq \int \log |f^{-1'}(y)| p(y) dy$$

(high density p(y) tends to occur at points with large slope)

• empirical estimator

$$\hat{C}_{X \to Y} := \frac{1}{m} \sum_{j=1}^{m} \log \left| \frac{y_{j+1} - y_j}{x_{j+1} - x_j} \right| \approx \int \log |f'(x)| p(x) dx$$

• infer  $X \to Y$  whenever

$$\hat{C}_{X\to Y} < \hat{C}_{Y\to X}$$
.

"information geometric causal inference (IGCI)"

# Experiments

### Rhine data:

- water levels at 22 cities measured in 15 minutes intervals from 1990 to 2008,
- pick 231 random pairs and decide which one is "upstream"
- 87% correct decisions

Note: IGCI actually not suitable for non-deterministic relations yet although several positive results have been reported



### **7** Additive noise models:

Let X be uniformly distributed on [-1,1] and  $Y = X^2$ . Show that there is no function g such that

$$X = g(Y) + U$$
 with  $U \perp Y$ 



### **8** Darmois-Skitovic:

Let P(X, Y) be the uniform distribution on the below diamond.



- Show that X and Y are uncorrelated.
- Show that  $X \not\perp Y$ .

Convincing arguments are at least as good as calculations! (no lengthy calculations necessary)

### Exercises

### **()** Information-geometric causal inference:

Let f be the following bijection of the interval [0, 1].



Let X be uniformly distributed on [0, 1], i.e., p(X) = 1 (w.r.t. the Lebesgue measure) and Y = f(X).

- Compute the density p(Y) w.r.t. the Lebesgue measure.
- Argue in what sense p(Y) contains information about f.