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Outline

1 why the relation between statistics and causality is tricky

2 causal inference using conditional independences
(statistical and general)

3 causal inference using other properties of joint
distributions

4 causal inference in time series, quantifying causal
strength

5 why causal problems matter for prediction
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Part 3: causal inference using other properties of joint
distributions

• intuitive approach to distinguishing cause and effect

• new foundations of causal inference

• additive noise based causal inference

• information-geometric causal inference
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Intuitive approach to distinguishing cause and effect
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

X (Altitude)→ Y (Temperature)
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

Y (Solar Radiation)→ X (Temperature)
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

X (Age)→ Y (Income)
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Idea of new inference rules

Consider two decompositions of P(X ,Y ):

P(X )P(Y |X ) or P(Y )P(X |Y ) ,

• does one of it look simpler than the other?

• if yes, assume this to be the causal direction

Implementing this idea is a challenging research program:

• defining simplicity/complexity

• estimating it from finite data

• justifying why this is related to causality
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Particularly nice toy examples (1)

Janzing & Schölkopf: Causal inference using the algorithmic Markov condition, IEEE TIT 2010

Let X be binary and Y real-valued. Observe that both
P(Y |X = 0) and P(Y |X = 1) are Gaussians with different mean:

X → Y more plausible:

• simple effect of X : shift the mean of Y

• if Y was the cause it would be implausible that conditioning
on X separates the two modes of P(Y )
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Particularly nice toy examples (2)

Let P(Y ) be Gaussian and X = 1 above a certain threshold y0:

Y → X more plausible:

• simple effect of Y : set X via a threshold

• P(Y |X = 0) and P(Y |X = 1) look strange (truncated
Gaussians)
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Philosophical basis for new methods

• so far, it seems arbitrary how to defined simplicity/complexity

• we will recall and criticise the justification of faithfulness

• we replace faithfulness with a principle that we consider more
fundamental
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Justifying faithfulness

Unfaithful distributions occur with probability zero if

• nature chooses each P(Xj |PAj) independently

• each P(Xj |PAj) is chosen from a probability density in
parameter space (e.g. uniform distribution)

here the parameter space of each conditional is a subset of Rk

with k := {xj}{paj}
(see next slide)

C. Meek: Strong completeness and faithfulness in Bayesian networks. (UAI 1995)
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What we mean by parameter space

Consider the DAG

X

Z

Ya)

with binary Z ,X ,Y .

• P(Z ) is described by the value P(Z = 1)
(parameter space: [0, 1])

• P(X |Z ) is described by the values
P(X = 1|Z = 0),P(X = 1|Z = 1)
(parameter space: [0, 1]2)

• P(Y |X ,Z ) is described by the values P(Y = 1|X = i ,Z = j)
with i , j ∈ {0, 1}
(parameter space: [0, 1]4)

in total: 7 free parameters, set of parameters that induce
unfaithful distributions is a lower dimensional submanifold in this
7-dimensional space.
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However, we will argue...

• There are cases of obvious parameter tuning that do not
generate additional independences
(⇒ faithfulness is too weak)

• Not every violation of faithfulness is due to parameter tuning
since we do not believe in densities on the parameter space
(⇒ faithfulness is too strong)
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Why faithfulness is too weak

recall the motivating example:

we reject X → Y not only because Y → X yields simpler
explanations for the shape of the distribution, but
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For X → Y generation of P(X ,Y ) requires tuning

look what happens if we change P(X ):

Hence, reject X → Y because it requires tuning of P(X ) relative
to P(Y |X ). Faithfulness would accept both causal directions.
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Why faithfulness is too strong

Consider deterministic relations

X Y Z

Y = f (X )

• unfaithful because... (homework for today)

• but there is no adjustment between P(X ), P(Y |X ), P(Z |Y )

• only P(Y |X ) is ’non-generic’

We don’t want to reject non-generic conditionals, we only want to
reject non-generic relations between conditionals
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New foundations of new inference rules
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Algorithmic independence of conditionals

The shortest description of P(X1, . . . ,Xn) is given by separate
descriptions of P(Xj |PAj).

(Here, description length = Kolmogorov complexity)

Janzing, Schölkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010).

Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds &

Machines (2012).
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Recall: causal Principle

If two strings x and y are algorithmically dependent then either

x y x

z

y x y

1) 2) 3)

• every algorithmic dependence is due to a causal relation

• algorithmic analog to Reichenbach’s principle of common
cause

• distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Schölkopf IEEE TIT 2010
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Apply the causal principle to conditionals

K (P(Xj |PAj)) denotes the length of the shortest program
computing P(xj |paj) from (xj , paj).

• If nature chooses each mechanism P(Xj |PAj) independently
they are algorithmically independent, e.g.,

I (P(Xj |PAj) : P(X1|PA1),P(X2|PA2), . . . )
+
= 0 ∀j .

• equivalent to

K (P(X1, . . . ,Xn))
+
=

n∑
j=1

K (P(Xj |PAj))

(shortest description of the joint is given by separate
descriptions of the causal conditionals)
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Bivariate case

If X → Y then
I (P(X ) : P(Y |X ))

+
= 0

P(X ) contains no information about P(Y |X ) and vice versa.
(note: here we are not talking about information in the sense of
Shannon mutual information)
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Equivalent formulation

• Describing both P(X ) and P(Y |X ) describes P(X ,Y ).

• Moreover, describing P(X ,Y ) describes P(X ) and P(Y |X ).

• Therefore,

K (P(X ),P(Y |X ))
+
= K (P(X ,Y )) .

• Thus,

K (P(X )) + K (P(Y |X ))
+
= K (P(X ),P(Y |X )) ,

is equivalent to

K (P(X )) + K (Y |X ))
+
= K (P(X ,Y )) .

• Hence, the algorithmic independence of P(X ) and P(Y |X ) is
equivalent to

K (P(X ,Y ))
+
= K (P(X )) + K (P(Y |X )) .
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Relation to Occam’s Razor

Note:
K (P(X ,Y ))

+
= K (P(X )) + K (P(Y |X )) .

implies

K (P(X )) + K (P(Y |X )) ≤ K (P(Y )) + K (P(X |Y )) .

but not vice versa.
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Revisiting the motivating example

Knowing P(Y |X ), there is a short description of P(X ), namely
’the unique distribution for which

∑
x P(Y |x)P(x) is Gaussian’.
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Although Kolmogorov complexity is uncomputable...

we apply the principle of algorithmically independent conditionals:

• find notions of dependence of conditionals that capture
essential aspects

• use it as a foundation/justification of new inference rules
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Some new inference rules...

...that can also be justified by our philosophical principle
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Additive noise based causal inference
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Linear non-Gaussian models

Kano & Shimizu 2003

Theorem

Let X 6⊥⊥ Y . Then P(X ,Y ) admits linear models in both
directtion, i.e.,

Y = αX + UY with UY ⊥⊥ X

X = βY + UX with UX ⊥⊥ Y ,

if and only if P(X ,Y ) is bivariate Gaussian

• if P(X ,Y ) is non-Gaussian, there can be a linear model in at
most one direction.

• LINGAM: causal direction is the one that admits a linear
model
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Intuitive example:

Let X and UY be uniformly distributed. Then Y = αX + UY

induces uniform distribution on a diamond (left):

Y

X

Y

X

uniformly distributed Y and UX with X = βY + UX induces the
diamond on the right.
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Proof via Darmois-Skitovic

Theorem

Let X1, . . . ,Xn be independent random variables and

Y1 := a1X1 + · · ·+ anXn

Y2 := b1X1 + · · ·+ bnXn

be independent. Then each Xi with aibi 6= 0 is Gaussian.

proof involves Fourier transforms of probability distributions
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Example for Darmois-Skitovic

Let P(X ,Y ) = P(X )P(Y ) be uniform on [0, 1]2

Y

X

Y

X

rotating the axis by a generic angle generates dependences
between X and Y (although they are still uncorrelated)
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Proof of Theorem 1

• Assume independence of Y − αX and X .

• Assume independence of X − βY and Y .

• Set

X1 := X

X2 := Y − αX .

• Set

Y1 := Y

Y2 := X − βY .

• Then Y1 and Y2 can be written as linear combinations of X1

and X2. If X1 or X2 are non-Gaussian, then Y1 and Y2 cannot
be independent.
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Independent component analysis

Jutten & Hérault 1991

Theorem

Let U := (U1, . . . ,Un) be independent non-Gaussian random
variables and X := AU where A is an n× n matrix. Then U can be
determined from X up to permutation and rescaling of components
Uj .

follows from Darmois-Skitovic
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Application: blind source separation

e.g. Hyvärinen 1998

• n microphones record n speakers simultaneously.

• due to the different distance, each speaker j occurs with
different weight Aij in microphone i

A11

A12

A13

ICA recovers the signal of each speaker
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Applications of LINGAM

• applications in brain research (e.g. fMRI data) are considered
promising by several people (see e.g. talks of Hyvärinen)

• supported by positive results on simulated data where
LINGAM performed better than traditional methods like
Granger causality )

• not easy to find data with known ground truth
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LINGAM as a special case of ICA Shimizu et al. 2006

Let P(X1, . . . ,Xn) be generated by the linear structural equation

Xi =
∑
j

bijXj + Ui with independent Ui ,

where the set of non-zero bij define a DAG G . Then G can be
uniquely identified from P(X1, . . . ,Xn):

• write structural equation as X = BX + U

• hence (1− B)X = U

• rewrite as X = (1− B)−1U

• define A := (1− B)−1 to obtain usual ICA problem

• no ambiguity regarding permuting and scaling Uj : all diagonal
entries of 1−B are 1 (B is lower triangular with respect to an
appropriate ordering of nodes, therefore inverse is easy to see)

• compute B = 1− A−1 to recover the structural equation
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Distinguishing cause and effect via ICA/LINGAM

• Assume

X = UX

Y = αX + UY ,

where UX and UY are independent ’sources’.

• Hence,

X = UX

Y = αUX + UY

• The cause X contains only one source and the effect Y
contains both sources.
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Analogy to blind source separation problem

X

Y

U
X

U
Y

1

α

1

• The cause is like a microphone that receives only the signal
from 1 speaker

• The effect receives signal from both speakers

• ICA can easy decide which one is which
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Non-linear additive noise based inference Hoyer, Janzing, Peters, Schölkopf, 2008

• Assume that the effect is a function of the cause up to an
additive noise term that is statistically independent of the
cause:

Y = f (X ) + E with E ⊥⊥ X

• there will, in the generic case, be no model

X = g(Y ) + Ẽ with Ẽ ⊥⊥ Y ,

even if f is invertible! (proof is non-trivial)
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Note...

Y = f (X ,E ) with E ⊥⊥ X

can model any conditional P(Y |X )

Y = f (X ) + E with E ⊥⊥ X

restricts the class of possible P(Y |X )
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Intuition

• additive noise model from X to Y imposes that the width of
noise is constant in x .

• for non-linear f , the width of noise wont’t be constant in y at
the same time.
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Causal inference method:

Prefer the causal direction that can better be fit with an
additive noise model.

Implementation:

• Compute a function f as non-linear regression of Y on X , i.e.,
f (x) := E(Y |x).

• Compute the residual

E := Y − f (X )

• check whether E and X are statistically independent
(uncorrelated is not sufficient, method requires tests that are
able to detect higher order dependences)
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Why f is given by the conditional expectation

• If Y − f (X ) should be independent of X , its expectation
needs to be independent of X , i.e.,

E[Y − f (x)|x ]

needs to be constant in x .

• Assume E[Y − f (x)|x ] = 0 without loss of generality because
this changes only the offset of the noise

• Hence, E[Y |x ] = f (x).

46



Justifying additive noise based causal inference

Assume Y = f (X ) + E with E ⊥⊥ X

• Then P(Y ) and P(X |Y ) are related:

∂2

∂y2
log p(y) = − ∂2

∂y2
log p(x |y)− 1

f ′(x)

∂2

∂x∂y
log p(x |y) .

⇒ ∂2

∂y2 log p(y) can be computed from p(x |y) knowing f ′(x0)
for one specific x0

• Given P(X |Y ), P(Y ) has a short description.

• We reject Y → X provided that P(Y ) is complex

Janzing, Steudel, OSID (2010)
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Cause-effect pairs

• http://webdav.tuebingen.mpg.de/cause-effect/

• contains currently 86 data sets with X ,Y where we believe to
know whether X → Y or Y → X , e.g.

day in the year → temperature
age of snails → length

drinking water access → infant mortality rate
open http connections → bytes sent

outside room temperature → inside room temperature
age of humans → wage per hour

• goal: collect more pairs, diverse domains

• ground truth should be obvious to non-experts
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Additive noise based inference...

• about 70% correct decisions for 70 cause-effect pairs with
known ground truth

• fraction even better if we allow “no decision”

• we do not claim that noise is always additive in real life, but if
it is for one direction this is unlikely to be the wrong one

• generalization to n variables outperformed PC
(Peters, Mooij, Janzing, Schölkopf UAI 2011)

• generalization to time series
(Peters, Janzing, Schölkopf NIPS 2013)

• note the paradigm shift: a model is good if the noise is
independent, not if the noise is small
(if it’s dependent it may not be noise?)
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Additive noise based inference with n variables Peters et al. 2014

• Step 1: find a causal order

• Step 2: drop unnecessary edges in the corresponding complete
DAG

50



Step 1: find the causal order

i.e., find π ∈ Sn such that there is no arrow Xπ(i) → Xπ(j) for
π(i) > π(j)

• compute regression for each Xj :

Xj = f (X1, . . . ,Xj−1,Xj+1, . . . ,Xn) + Ej

• check dependence between Ej and Xj

• let π(n) be the node for which the dependence is minimal

• drop Xπ(n) and repeat the procedure with n − 1 variables
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Step 2: remove unnecessary edges

Apply the following procedure to each node Xπ(j):

1 for each Xπ(j) let the parents be all its predecessors w.r.t.
order π

2 check each parent whether removing it still yields independent
noise

3 repeat 2 until no further parents can be removed

note: step 2 performs a conditional independence test. The
additive noise assumption reduces it to testing independence of
error term.
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Application to real data

• A: altitude of 349 places in Germany

• T average temperature

• D duration of sunshine
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Inferring confounders with additive noise

X = fX (T ) + UX

Y = fY (T ) + UY

with jointly independent T ,UX ,UY .
note: contains X → Y by setting fX = id and UX = 0. Similar for
Y → X .
conjecture: fX , fY can be inferred up to bijective transformations
of T
argument: suggested by a theoretical result with small noise

interpretation: constructing fX , fY amount to distinguishing
between the three cases

X → Y X ← T → Y X ← Y .
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Intuition

• without noise, the points describe the line (fX (t), fY (t))

*
*

*
*
*

**
*
*

*
*

*
*

****
*
*

*
* *

***
***

* *

*

**
*
* * *

*
*
*

* *

*
*

*

*
y

x

(fX(t),fY(t))

• independent noise UX and UY is added in X and Y directions
• original line can be obtained by deconvolution with an

appropriate product distribution
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Post-nonlinear model Zhang & Hyvärinen, 2009

Let P(X ,Y ) be generated by

Y = g(f (X ) + U) with U ⊥⊥ X .

Then there is in the generic case no triple g̃ , f̃ , Ũ such that

X = g̃(f̃ (Y ) + Ũ) with Ũ ⊥⊥ Y .
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However...

employing properties of the noise

is not the only way

of inferring causal directions

→ look at the noiseless case...
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Information-geometric causal inference
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Inferring deterministic causality Daniusis, Janzing,... UAI 2010, Janzing et al. AI 2012

• Problem: infer whether Y = f (X ) or X = f −1(Y ) is the right
causal model

• Idea: if X → Y then f and the density pX are chosen
independently “by nature”

• Hence, peaks of pX do not correlate with the slope of f

• Then, peaks of pY correlate with the slope of f −1

y

x

f(x)

p(x)

p(y)
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Formalization

Let f be a monotonously increasing bijection of [0, 1]

• Postulate:∫ 1

0
log f ′(x)p(x)dx =

∫ 1

0
log f ′(x)dx (approximately)

• Idea: averaging log of slope of f over p is the same as
averaging over uniform distribution

• Implication:∫ 1

0
log f −1′p(y)dy ≥

∫ 1

0
log f −1′(y)dy
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Testable implication / inference rule

• If X → Y then∫
log |f ′(x)|p(x)dx ≤

∫
log |f −1′(y)|p(y)dy

(high density p(y) tends to occur at points with large slope)

• empirical estimator

ĈX→Y :=
1

m

m∑
j=1

log

∣∣∣∣yj+1 − yj
xj+1 − xj

∣∣∣∣ ≈ ∫ log |f ′(x)|p(x)dx

• infer X → Y whenever

ĈX→Y < ĈY→X .

“information geometric causal inference (IGCI)”
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Experiments

Rhine data:

• water levels at 22 cities measured in 15 minutes intervals from
1990 to 2008,

• pick 231 random pairs and decide which one is “upstream”

• 87% correct decisions

Note: IGCI actually not suitable for non-deterministic relations yet
although several positive results have been reported
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Exercises

7 Additive noise models:
Let X be uniformly distributed on [−1, 1] and Y = X 2. Show
that there is no function g such that

X = g(Y ) + U with U ⊥⊥ Y
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Exercises

8 Darmois-Skitovic:
Let P(X ,Y ) be the uniform distribution on the below
diamond.

1

2 3

Y

X

-1

-1 1

• Show that X and Y are uncorrelated.
• Show that X 6⊥⊥ Y .

Convincing arguments are at least as good as calculations! (no
lengthy calculations necessary)
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Exercises

9 Information-geometric causal inference:
Let f be the following bijection of the interval [0, 1].

1

X1

Y

f

(1-a,a)

(1,1)

Let X be uniformly distributed on [0, 1], i.e., p(X ) = 1 (w.r.t.
the Lebesgue measure) and Y = f (X ).

• Compute the density p(Y ) w.r.t. the Lebesgue measure.
• Argue in what sense p(Y ) contains information about f .
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