# Inferring causality from passive observations

#### Dominik Janzing

#### Max Planck Institute for Intelligent Systems Tübingen, Germany

#### 18.-22. August 2014



# Preliminarities

- Interdisciplinary topic: between computer science, mathematics, philosophy of science, relations to physics, applications in all kind of sciences such that economy, psychology, biology,...
- Switches between vague and precise: causality is hard to formalize. Justifying mathematical assumptions about causality involves philosophical issues. However, once we have stated assumptions, we prove precise mathematical theorems.
- **Challenging** both from the conceptual and the mathematical perspective
- Ask questions on all levels: during and after the lectures and excercises as much as you like! Gaps that appear to be huge can usually be closed quickly. Don't ask scientific questions by email!
- **Structure:** the slides are carefully structured and contain the main material. My explanations on the blackboard are spontaneous and need not be well-structured.

# Schedule

• morning sessions: lectures and (at the end) presentation of the questions to be done until the next day exercises session.

#### • afternoon sessions:

- Monday: Questions and feedback (optional, but highly recommended)
- Tuesday to Friday: Solution of the homework from the previous day
- Friday: brainstorming about future directions

# Requirements for passing

### • Homework assignments:

50 out of 100 credits

• Presence: obligatory unless there are good reasons

## Literature:

• Peter Spirtes, Clark Glymour, Richard Scheines: Causation, Prediction, and Search, 1993

• Judea Pearl: Causality. Models, Reasoning, and Inference, 2000.

references to articles are given on the respective slides.

- **()** why the relation between statistics and causality is tricky
- causal inference using conditional independences (statistical and general)
- causal inference using other properties of joint distributions
- causal inference in time series, quantifying causal strength
- **6** why causal problems matter for prediction

# Part 1: the tricky relation between statistics and causality

• what's wrong with common causal conclusions: motivation of the problem

#### • mathematics tools:

measure theoy, statistical (in)dependences vs. correlations, information theory

- first basis for correct causal conclusions: Reichenbach's principle of common cause
- a language for causal relations: directed acyclic graphs (DAGs), structural equations
- cornerstone of causal inference: causal Markov condition
- quantitative causal statements: Pearl's do calculus
- counterfactual causal statements

### What's wrong with common causal conclusions

Recent study reports negative correlation between coffee consumption and life expectancy

Paradox conclusion:

- drinking coffee is healthy
- nevertheless, strong coffee drinkers tend to die earlier because they tend to have unhealthy habits

#### $\Rightarrow$ Relation between statistical and causal dependences is tricky

...differ by **slight** rewording:

• "The life of coffee drinkers is 3 years shorter (on the average)."

• "Coffee drinking shortens the life by 3 years (on the average)."

...differ by **slight** rewording:

• "The life of coffee drinkers is 3 years shorter (on the average)."

statistical statement:

can be tested by standard statistical tools

• "Coffee drinking shortens the life by 3 years (on the average)."

causal statement:

no standard methods available, this week will give partial answers, don't expect simple ones!

#### ...in the sense of this lecture: Predict the effect of interventions without doing them

(e.g. what would have happened if someone had changed his/her coffee drinking habits?)

- therefore the lecture is called "Causal inference from *passive* observations"
- statistical evaluation of causal effects of *true* interventions is sometimes also called causal inference, but that's not what we have in mind

# Example for perfect interventions

double-blind randomized medical test

- toss a coin which patient gets a medical drug and which one the placebo
- the decision whether the drug helped is made by a doctor who doesn't know who got the drug



# Why interventions may be difficult

#### • expensive:

test the impact of changing the interest rate

#### • unethical:

give patients a treatment that is already believed (but not proven) to be bad

#### • impossible:

move the moon to check whether its really the cause of a solar eclipse

# Difficulties in defining interventions

• Assume X is the variable gross national product

• what does 'setting X to x' mean?

 changing X is logically impossible without the change of some other variables (e.g., production of companies, consumption of goods) "The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm."

(Betrand Russell, 1913)

• Interpreting phenomena in nature as causal is just an artefact of our mind

• Physical laws are given by equations that describe relations between observations (e.g. differential equations). Unclear how causal language fits into such concepts.

# Our working hypotheses..

• Causal questions are scientific questions

(whether or not a medical drug helps or not is a *scientific* question and definitely an important one)

• Despite all the difficulties about the philosophical meaning of causality it's possible to do research on causality

(the philosophical interpretation of quantum physics has also caused headache since one century – nevertheless modern technology uses it)

#### • Brain Research:

which brain region influences which one during some task? (goal: help paralyzed patients, given: EEG or fMRI data)

### • Biogenetics:

which genes are responsible for certain diseases?

#### • Climate research:

understand causes of global temperature fluctuations

### Mathematical tools

## Measures

A **measure** on the set  $\Omega$  is a map  $\mu$  assigning a number to each 'measurable' subset  $A \subset \Omega$  such that

- $\mu(A) \in \mathbb{R}^+_0 \cup \infty$
- $\mu(\emptyset) = 0$
- $\mu(\bigcup_j A_j) = \sum_j \mu(A_j)$  for every countable family of disjoint sets  $A_j \subset \Omega$ .

(Why 'measurable' instead of general  $A \in 2^{\Omega}$ : There are subsets that are so weird that one cannot assign a measure to them. E.g. not all subsets of [0, 1] have a length, see also Banach-Tarski-paradox.)

 $\mu$  is a **probability measure** if  $\mu(\Omega) = 1$ 

There is a precise sense in which every measure  $\boldsymbol{\mu}$  defines an integral

$$\int f(\omega)d\mu(\omega)\,,$$

for every 'measurable function' f, i.e., function that is sufficiently well-behaved.

**Idea:**  $\mu$  defines how much each point is weighted. (Don't ask: why not weighting each point equally much? This already refers to a measure!) • counting measure on integers:

 $\nu(A) =$  number of integers in A

• Lebesgue measure:

 $\lambda(A) := \text{ length of } A$ 

# Densities

a measure  $\tilde{\mu}$  is said to have a density f w.r.t.  $\mu$  if

$$\tilde{\mu}(A) = \int_A f(\omega) d\mu(\omega),$$

for all measurable A.

**Idea:**  $\tilde{\mu}$  can be obtained from  $\mu$  by reweighting points via the factor f (not possible if there are sets A with  $\mu(A) = 0$  and  $\tilde{\mu}(A) \neq 0$ ).

• Gaussian distribution with expectation  $\mu$  and standard deviation  $\sigma$  on  $\mathbb R$  has the density

$$p(x) := \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

w.r.t. the Lebesgue measure

- counting measure has no density w.r.t. Lebesgue measure
- Lebesgue measure has no density w.r.t. counting measures

Let  $\mu_1, \mu_2$  be measures on  $\Omega_1, \Omega_2$ , respectively. Then

$$(\mu_1 \otimes \mu_2)(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2).$$

(Write general  $A \subset \Omega_1 \times \Omega_2$  as infinite disjoint union of cartesian products)

**Example:** Lebegue measure on  $\mathbb{R}^2$  (=area) is the product of Lebesgue measure on  $\mathbb{R}$  (length)

## Notation and terminology

- Random variables: denoted by capital letters, e.g., *X*, *Y*, *Z* with ranges  $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
- specific values by  $x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}$

• vector-valued random variables: (= sets of scalar random variables) denoted by X, Y, Z with values x, y, z.

functions vs. values of functions: by f(X) we mean the function x → f(x)

# Joint distributions and joint probability densities

 Probability distribution: P(X<sub>1</sub>,...,X<sub>n</sub>) describes probabilities for events like (X<sub>1</sub>,...,X<sub>n</sub>) ∈ A ⊂ X<sub>1</sub> × ··· × X<sub>n</sub>

• **Probability density:**  $p(X_1, ..., X_n)$  is called the density for  $P(X_1, ..., X_n)$  if

$$P\{(X_1,\ldots,X_n)\in A\}=\int_A p(x_1,\ldots,x_n)d\mu(x_1,\ldots,x_n),$$

where  $\mu$  should be clear from the context.

### Our two main examples for densities:

• for continuous variables:

$$P\{(X_1,\ldots,X_n)\in A\}=\int_A p(x_1,\ldots,x_n)d^n(x_1,\ldots,x_n).$$

( $\mu$  is the Lebesgue measure, drop it because this is the usual integral)

• for discrete variables

$$P\{(X_1,\ldots,X_n)\in A\}=\sum_{(x_1,\ldots,x_n)\in A}p(x_1,\ldots,x_n).$$

( $\mu$  is the counting measure on the discrete set  $\mathcal{X}_1 \times \cdots \times \mathcal{X}_n$ . Then p is also called the probability mass function.)

- common framework for discrete and continuous variables
- sums and integrals are both measure theoretic integrals
- part of the variables in  $p(x_1, \ldots, x_n)$  may be continuous and others discrete. Then we still have

$$P\{(X_1,\ldots,X_n)\in A\}=\int_A p(x_1,\ldots,x_n)d\mu(x_1,\ldots,x_n),$$

and  $\mu$  is a tensor product that consists of Lebesgue measures (for the continuous variables) and counting measures (on the discrete ones).

## Examples for probability densities: discrete case

Let X attain values in  $\{1, \ldots, n\}$  with probability 1/n each.



Then

$$p(x) = \begin{cases} 1/n & \text{for } x \in \{1, \dots, n\} \\ 0 & \text{for } x \in \mathbb{R} \setminus \{1, \dots, n\} \end{cases}$$

Then,

$$P(A)=\int p(x)d\nu(x)\,,$$

where  $\mu$  is the counting measure, i.e.,

$$\nu(A) =$$
 number of integers in A

for all measurable subsets A of  $\mathbb{R}$ .

## Examples for probability densities: continuous case

Let Y be uniformly distributed in [0, 1].



#### Then

$$p(y) = \left\{ egin{array}{cc} 1 & ext{ for } y \in [0,1] \\ 0 & ext{ otherwise } \end{array} 
ight.$$

 $\sim$ 

Then,

$$P(A) = \int p(y) d\lambda(y),$$

where  $\lambda$  is the Lebesgue measure, i.e.,  $\lambda(A)$  is the length of A. In this case, we often drop  $\lambda$  and write

$$P(A) = \int_A p(y) dy$$
.

31

## Examples for probability densities: hybrid case

The product density reads

$$p(x,y)=p(x)p(y).$$

Then,

$$P(A) = \int p(x,y) d(\nu \otimes \lambda)(x,y),$$

where  $\mu\otimes\lambda$  is the product of counting measure and Lebesgue measure, i.e.,

 $\mu(A \times B) =$  (number of integers in A)  $\cdot$  (length of B) .



# Difficult case

Rotate the distribution P(X, Y):

$$Z := \frac{1}{\sqrt{2}}(X+Y), \qquad W := \frac{1}{\sqrt{2}}(X-Y)$$



- there is no density w.r.t. any product measure
- *Z*, *W* are both continuous, but the way they are related is discrete
- for such distributions we avoid using *densities* and describe P(Z, W) in a different way.

# Why using continuous variables at all...

...empirical data is always discrete anyway? - Then we don't have all these issues.

Answer: many interesting models contain continuous variables. E.g. discretizations of bijective functions are neither injective not surjective:



 $\Rightarrow$  despite all the issues with continuous variables, they are sometimes simpler

• Expectation:

$$\mathbb{E}[X] := \int x dP(x) = \int x p(x) d\mu(x).$$

Note: the probability distribution is also a measure, it therefore also defines an integral!

• Covariance:

$$Cov[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

• Variance:

$$V[X] := Cov[X, X]$$

• Standard deviation:

$$\sigma_X := \sqrt{V[X]}$$

note:  $\sigma_X$  has the same unit as X, while V[X] does not.
- Set of random variables with finite variance is a vector space  $\ensuremath{\mathcal{V}}$ 

- Variables with zero mean define a subspace  $\mathcal{V}_{\mathbf{0}}$ 

- covariance defines an inner product on  $\mathcal{V}_{\mathbf{0}}$ 

• variance is squared length, standard deviation the length

### Covariance matrix

#### • Cross covariance matrix:

Let  $\mathbf{X} = (X_1, \dots, X_n)$  and  $\mathbf{Y} := (Y_1, \dots, Y_k)$  be vector-valued variables. Then

$$\Sigma_{\mathbf{X},\mathbf{Y}} := (Cov[X_i, Y_j])_{i,j}.$$

• Covariance matrix:

$$\Sigma_{\mathbf{X}} := \Sigma_{\mathbf{X},\mathbf{X}}$$

## Correlation

• correlation coefficient:

$$cor[X, Y] := rac{Cov[X, Y]}{\sigma_X \sigma_Y} \in [-1, 1]$$

#### • interpretation:

positive/negative correlation means tha6 large X tend to occur together with large/small Y

$$cor[X, Y] = \pm 1 \quad \Leftrightarrow \quad X = \alpha Y \text{ with } \alpha \neq 0$$

• geometric picture:

$$cor[X, Y] = \cos \phi$$

in the space of centered variables with finite variance



Two equivalent formulation of linear regression:

- find  $c \in \mathbb{R}$  such that Y cX has minimal variance
- find  $c \in \mathbb{R}$  such that Y cX and X are uncorrelated

equivalent because orthogonal projection minimizes the distance

$$X \perp Y \quad :\Leftrightarrow \quad P(X \in A, Y \in B) = P(X \in A)P(X \in B) \quad \forall A, B$$

in terms of densities: p(X, Y) = p(X)p(Y)

- implies uncorrelatedness, i.e.,  $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- uncorrelatedness does not imply independence: Let P(X, Y) be uniform distribution on the circle, i.e.,  $X^2 + Y^2 = 1$ , where P(X) and P(Y) are uniformly distributed on [-1, 1]



(uncorrelated because P(X, Y) is symmetric under reflection  $X \mapsto -X$ )

- uncorrelated and independent is equivalent for binary variables and for jointly Gaussian variables
- joint independence:

 $X_1, \ldots, X_n$  jointly ind.  $\Rightarrow p(X_1, \ldots, X_n) = p(X_1) \cdots p(X_n)$ .

• conditional independence: for three sets of variables

$$\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}$$
 if  $p(\mathbf{x}, \mathbf{y} | \mathbf{z}) = p(\mathbf{x} | \mathbf{z}) p(\mathbf{y} | \mathbf{z}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z}$ 

• difficult to test: each z defines a different distribution

# Semi-graphoid axoims

the following rules apply to conditional independence

• symmetry:

• decomposition:

$$X \perp YW \mid Z \Rightarrow X \perp Y \mid Z$$

• weak union:

$$X \perp YW \mid Z \Rightarrow X \perp Y \mid ZW$$

• contraction:

in distributions with strictly positive density one also has the **intersection property**:

$$X \perp W | ZY \quad \& \quad X \perp Y | ZW \Rightarrow X \perp YW | Z$$

Pearl: Causality, 2000

Given a joint distribution P, a generating set is a list of independences from which all the independences follow that hold for P.

### Gaussian variables

• joint density: if  $\Sigma_{\mathbf{X},\mathbf{X}}$  is invertible, we have

$$p(\mathbf{x}) \sim e^{-rac{1}{2}(\mathbf{x}-\mu)^t C(\mathbf{x}-\mu)}$$
 .

where  $C := \Sigma_{XX}^{-1}$  is the concentration matrix and  $\mu$  is the vector of expectations.

• conditional distributions:

Let  $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$  and  $\mu = (\mu_1, \mu_2)$  and

$$\boldsymbol{\Sigma} = \left( \begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right)$$

Then  $p(\mathbf{X}_1|\mathbf{x}_2)$  is a Gaussian with mean  $\mu_1 + \Sigma_{11}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2)$ and covariance matrix  $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ .

• conditional indepedence: can be seen from  $\Sigma_{XX}$  alone

## Some information theory

• joint Shannon entropy of set of random variables:

$$H(\mathbf{X}) := -\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x})$$

(differential entropy for continuous variables  $-\int p(\mathbf{x}) \log p(\mathbf{x}) d\mathbf{x}$  has less nice properties)

• conditional entropy:

$$H(\mathbf{Y}|\mathbf{X}) = \sum_{\mathbf{x}} p(\mathbf{x}) H(\mathbf{Y}|\mathbf{x}) = -\sum_{\mathbf{x}} \sum_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) \log p(\mathbf{y}|\mathbf{x}).$$

• additivity:

$$H(\mathbf{X}, \mathbf{Y}) = H(\mathbf{X}) + H(\mathbf{Y}|\mathbf{X}) = H(\mathbf{Y}) + H(\mathbf{X}|\mathbf{Y}).$$

• mutual information:

$$I(\mathbf{X} : \mathbf{Y} | \mathbf{Z}) := H(\mathbf{X} | \mathbf{Z}) + H(\mathbf{Y} | \mathbf{Z}) - H(\mathbf{X}, \mathbf{Y} | \mathbf{Z})$$

zero if and only if  $X \perp Y | Z$ .

independently identically distributed

"Let  $x_1, \ldots, x_n$  be i.i.d. drawn from P(X)" means that every  $x_j$  is drawn from the same distribution P(X)

- what does this mean?
- when is this justified?
- also applicable to humans although everyone is different?
  E.g., let x<sub>j</sub> be the height of the *j*th person.

Consider two different experiments:

- On a long hike from Denmark to the South of Italy, measure the height of every person you meet and obtain  $x_1, \ldots, x_n$
- Write all the heights of a small piece of paper, mix all the pieces and draw x<sub>π(1)</sub>,..., x<sub>π(n)</sub>.

 $x_1, \ldots, x_n$  isn't i.i.d. (people are taller in the North).

Whether or not some data is i.i.d. is not a property of the world but of the way we acquire the data. Here, the mixing generates the i.i.d. property despite the different races.

de Finetti's theorem: i.i.d. properties come from symmetries of distributions.

First basis for causal conclusions

# Reichenbach's principle of common cause (1956)

If two variables X and Y are statistically dependent then either



- in case 2) Reichenbach postulated  $X \perp Y | Z$ .
- every statistical dependence is due to a causal relation, we also call 2) "causal".
- distinction between 3 cases is a key problem in scientific reasoning.

# Coffee example

- coffee drinking C increases life expectancy C
- common cause "Personality" P increases coffee drinking C but decreases (via other habits) life expectancy L
- negative correlation by common cause stronger than positive by direct influence



Fort a certain disease, observe that

• people taking a certain drug recover less often than the ones that didn't take it (drug seems to hurt instead of helping)

- females taking the drug recover more often than females not taking it (drug seems to help females)
- males taking the drug recover also more often (drug seems to help males)

how can a drug hurt on the average when it helps males and females?

# Resolving Simpson's paradox

- Z: gender
- X: taking the drug or not
- Y: recover or not



- assume females take the drug more often and recover less often.
- then gender induces a negative correlation between taking and recovery
- negative correlation overcompensates the positive effect of the drug

### A Language for causal conclusions

## Causal inference problem, general form Spirtes, Glymour, Scheines, Pearl

- Given variables  $X_1, \ldots, X_n$
- infer causal structure among them from *n*-tuples iid drawn from P(X<sub>1</sub>,...,X<sub>n</sub>)
- causal structure = directed acyclic graph (DAG)



### Functional model of causality Pearl et al

 every node X<sub>j</sub> is a function of its parents and an unobserved noise term U<sub>j</sub>



• all noise terms  $U_j$  are statistically independent (causal sufficiency)

## The meaning of the DAG and the structural equations

result of adjusting all parents: setting parents PA<sub>j</sub> of X<sub>j</sub> to pa<sub>j</sub> changes X<sub>j</sub> to x<sub>j</sub> = f<sub>j</sub>(pa<sub>j</sub>, u<sub>j</sub>).

• result of adjusting a subset of parents: distribution of  $X_j$  can be computed from structural equation, details later

• adjusting children of X<sub>j</sub> has no effect on X<sub>j</sub>

#### • independence of noise:

if some noise terms  $U_1, \ldots, U_k$  were dependent, they had a common cause that needs to occur explicitly in the model

#### • determinism:

- here we have indeterminism only because we don't know the values of the noise variables
- inconsistent with modern physics: quantum theory states existence of absolute randomness in microphysics, two identically prepared electrons do not necessarily hit the same point on a screen even if all background conditions are exactly the same

### Cornerstone of causal inference: causal Markov condition

# Causal Markov condition (4 equivalent versions) Lauritzen et al, Pearl

- existence of a functional model
- local Markov condition: every node is conditionally independent of its non-descendants, given its parents



(information exchange with non-descendants involves parents)

- global Markov condition: If Z d-separates X, Y then X ⊥ Y |Z (definition follows)
- Factorization: p(X<sub>1</sub>,...,X<sub>n</sub>) = ∏<sub>j</sub> p(X<sub>j</sub>|PA<sub>j</sub>) (subject to a technical condition)

(every  $p(X_j|PA_j)$  describes a causal mechanism)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be **blocked** by the set Z if

- q contains a chain  $i \to m \to j$  or a fork  $i \leftarrow m \to j$  such that the middle node is in Z, or
- q contains a collider i → m ← j such that the middle node is not in Z and such that no descendant of m is in Z.

Z is said to **d-separate** X and Y in the DAG G, formally

 $(X \perp Y | Z)_G$ 

if Z blocks every path from a node in X to a node in Y.

# Example (blocking of paths)



#### path from X to Y is blocked by conditioning on U or Z or both

# Example (unblocking of paths)



- path from X to Y is blocked by  $\emptyset$
- unblocked by conditioning on Z or W or both

# Example (blocking and unblocking of paths)



#### several options for blocking all paths between X and Y:

 $(X \perp Y | ZW)_G$  $(X \perp Y | ZUW)_G$  $(X \perp Y | VZUW)_G$ 

# Unblocking by conditioning on common effects

Berkson's paradox (1946), selection bias. Example: X, Y, Z binary



- assume language skils and science skills are independent a priori
- assume pupils go to highschool if they have good skills in science or languages
- then there is a negative correlation between science skills and language skills in high school

Hypothetical poll among students in Jyväskylä:

- 'Do you like cultural life in Jyväskylä?' C = Yes/No
- 'Do you like the academic programs at the University of Jyväskylä?' A =Yes/No

Result: C and A are negatively correlated

## Possible explanations

- C → A: Students who enjoy cultural life spend to little time with learning. Then they hate the academic program because they get lost.
- A → C: Students who like the academic program ignore cultural life and therefore underestimate it
- $A \leftarrow P \rightarrow C$ : common cause 'Personality' influences both
- A → S ← C: Students who hate both leave Jyväskylä. Therefore our poll describes P(A, C|S = 1) where S labels whether someone stays.

 $\Rightarrow$  extend Reichenbach's principle by a fourth alternative: the dataset conditions on a common effect of X and Y without noticing

### Asymmetry under inverting arrows

Reichenbach (1956)



 $X \perp Y$  $X \not\perp Y$  $X \perp Y \mid Z$  $X \not\perp Y \mid Z$ 

## Equivalence of Markov cond.: Local $\Rightarrow$ factorization

- Proof by induction. Note the factorization is trivial for n = 1.
- Assume that local Markov for n-1 nodes implies

$$p(x_1,\ldots,x_{n-1})=\prod_{j=1}^{n-1}p(x_j|pa_j).$$

By local Markov, X<sub>n</sub> ⊥ ND<sub>n</sub> | PA<sub>n</sub>. Assume X<sub>n</sub> is a terminal node, i.e., it has no descendants, then ND<sub>n</sub> = {X<sub>1</sub>,..., X<sub>n-1</sub>}. Thus

$$X_n \perp \{X_1,\ldots,X_{n-1}\} \mid PA_n$$

and hence the general decomposition

$$p(x_1,...,x_n) = p(x_n|x_1,...,x_{n-1})p(x_1,...,x_{n-1}).$$

becomes  $p(x_1,...,x_n) = p(x_n | pa_n) p(x_1,...,x_{n-1}).$ 

• By induction,  $p(x_1, \ldots, x_n) = \prod_{j=1}^n p(x_j | pa_j)$ .

Need to prove  $(X \perp Y | Z)_G \Rightarrow (X \perp Y | Z)_p$ . Rough idea:

Assume  $(X \perp Y | Z)_G$ 

- define the smallest subgraph G' containing X, Y, Z and all their ancestors
- consider moral graph  $G'^m$  (undirected graph containing the edges of G' and links between all parents)
- use results that relate factorization of probabilities with separation in undirected graphs

### Equiv: Global Markov $\Rightarrow$ local Markov

Know that if Z d-separates X, Y, then  $X \perp Y | Z$ . Need to show that  $X_j \perp ND_j | PA_j$ .

Simply need to show that the parents  $PA_j$  d-separate  $X_j$  from its non-descendants  $ND_j$ :

All paths connecting  $X_j$  and  $ND_j$  include a  $P \in PA_j$ , but never as a collider

$$\cdot \to P \leftarrow X_j$$

Hence all paths are chains

$$\to P \to X_j$$

or forks

$$\cdot \leftarrow P \rightarrow X_j$$

Therefore, the parents block every path between  $X_i$  and  $ND_i$ .
## Functional model $\Rightarrow$ local Markov



- augmented DAG G' contains unobserved noise
- local Markov-condition holds for G':
  - (i): the unexplained noise terms  $U_j$  are jointly independent, and thus (unconditionally) independent of their non-descendants
  - (ii): for the  $X_j$ , we have

 $X_j \perp ND'_j | PA'_j$ 

because  $X_j$  is a (deterministic) function of  $PA'_j$ .

- local Markov in G' implies global Markov in G'
- global Markov in G' implies local Markov in G (proof as last slide)

## Exercises

**Oconfounding:** Let X, Y, Z be real-valued variables coupled by the structural equations

$$Z = U_Z$$
  

$$X = \alpha Z + U_X$$
  

$$Y = \beta X + \gamma Z + U_Y$$

Find values  $\alpha, \beta, \gamma$  such that

- X and Y are uncorrelated but X influences Y
- X and Y are positively correlated although X has a negative effect on Y

Prove your claims. 10 credits.

## Exercises

## Onditional independences implied by structural equations:

Let X, Y, Z be related by the structural equations

$$X = U_X$$
  

$$Y = f_Y(X) + U_Y$$
  

$$Z = f_Z(Y) + U_Z$$

Show that the joint independence of  $U_X$ ,  $U_Y$ ,  $U_Z$  implies  $X \perp Z | Y$  without using the equivalence of different Markov conditions. 5 credits.



③ Given the causal structure X → Y → Z → W. Show that the local Markov condition togther with the semi-graphoid axioms imply

 $X \perp W | Y$ .

5 credits