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Preliminarities

• Interdisciplinary topic: between computer science,
mathematics, philosophy of science, relations to physics,
applications in all kind of sciences such that economy,
psychology, biology,...

• Switches between vague and precise: causality is hard to
formalize. Justifying mathematical assumptions about
causality involves philosophical issues. However, once we have
stated assumptions, we prove precise mathematical theorems.

• Challenging both from the conceptual and the mathematical
perspective

• Ask questions on all levels: during and after the lectures
and excercises as much as you like! Gaps that appear to be
huge can usually be closed quickly. Don’t ask scientific
questions by email!

• Structure: the slides are carefully structured and contain the
main material. My explanations on the blackboard are
spontaneous and need not be well-structured.
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Schedule

• morning sessions: lectures and (at the end) presentation of
the questions to be done until the next day exercises session.

• afternoon sessions:
• Monday: Questions and feedback (optional, but highly

recommended)
• Tuesday to Friday: Solution of the homework from the

previous day
• Friday: brainstorming about future directions
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Requirements for passing

• Homework assignments:
50 out of 100 credits

• Presence: obligatory unless there are good reasons
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Literature:

• Peter Spirtes, Clark Glymour, Richard Scheines:
Causation, Prediction, and Search, 1993

• Judea Pearl: Causality. Models, Reasoning, and
Inference, 2000.

references to articles are given on the respective slides.
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Outline

1 why the relation between statistics and causality is tricky

2 causal inference using conditional independences
(statistical and general)

3 causal inference using other properties of joint
distributions

4 causal inference in time series, quantifying causal
strength

5 why causal problems matter for prediction
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Part 1: the tricky relation between statistics and causality

• what’s wrong with common causal conclusions:
motivation of the problem

• mathematics tools:
measure theoy, statistical (in)dependences vs. correlations,
information theory

• first basis for correct causal conclusions:
Reichenbach’s principle of common cause

• a language for causal relations:
directed acyclic graphs (DAGs), structural equations

• cornerstone of causal inference:
causal Markov condition

• quantitative causal statements:
Pearl’s do calculus

• counterfactual causal statements
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What’s wrong with common causal conclusions
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Can we infer causal relations from passive observations?

Recent study reports negative correlation between coffee
consumption and life expectancy

Paradox conclusion:

• drinking coffee is healthy

• nevertheless, strong coffee drinkers tend to die earlier because
they tend to have unhealthy habits

⇒ Relation between statistical and causal dependences is tricky
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Statistical relations and causal statements...

...differ by slight rewording:

• “The life of coffee drinkers is 3 years shorter (on the
average).”

• “Coffee drinking shortens the life by 3 years (on the
average).”
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Statistical relations and causal statements...

...differ by slight rewording:

• “The life of coffee drinkers is 3 years shorter (on the
average).”

statistical statement:
can be tested by standard statistical tools

• “Coffee drinking shortens the life by 3 years (on the
average).”

causal statement:
no standard methods available, this week will give partial
answers, don’t expect simple ones!
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Goal of causal inference...

...in the sense of this lecture:
Predict the effect of interventions without doing them

(e.g. what would have happened if someone had changed his/her
coffee drinking habits?)

• therefore the lecture is called “Causal inference from passive
observations”

• statistical evaluation of causal effects of true interventions is
sometimes also called causal inference, but that’s not what we
have in mind
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Example for perfect interventions

double-blind randomized medical test

• toss a coin which patient gets a medical drug and which one
the placebo

• the decision whether the drug helped is made by a doctor who
doesn’t know who got the drug

drug
yes/no

other 
influences

recovered
yes/no

?
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Why interventions may be difficult

• expensive:
test the impact of changing the interest rate

• unethical:
give patients a treatment that is already believed (but not
proven) to be bad

• impossible:
move the moon to check whether its really the cause of a
solar eclipse
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Difficulties in defining interventions

• Assume X is the variable gross national product

• what does ‘setting X to x ’ mean?

• changing X is logically impossible without the change of some
other variables (e.g., production of companies, consumption of
goods)
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Is causal inference science at all?

“The law of causality, I believe, like much that passes muster
among philosophers, is a relic of a bygone age, surviving, like the
monarchy, only because it is erroneously supposed to do no harm.”

(Betrand Russell, 1913)
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Idea of such a skeptical view

• Interpreting phenomena in nature as causal is just an artefact
of our mind

• Physical laws are given by equations that describe relations
between observations (e.g. differential equations). Unclear
how causal language fits into such concepts.
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Our working hypotheses..

• Causal questions are scientific questions

(whether or not a medical drug helps or not is a scientific
question and definitely an important one)

• Despite all the difficulties about the philosophical
meaning of causality it’s possibe to do research on
causality

(the philosophical interpretation of quantum physics has also
caused headache since one century – nevertheless modern
technology uses it)
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Example for causal problems from our collaborations

• Brain Research:
which brain region influences which one during some task?
(goal: help paralyzed patients, given: EEG or fMRI data)

• Biogenetics:
which genes are responsible for certain diseases?

• Climate research:
understand causes of global temperature fluctuations
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Mathematical tools
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Measures

A measure on the set Ω is a map µ assigning a number to each
‘measurable’ subset A ⊂ Ω such that

• µ(A) ∈ R+
0 ∪∞

• µ(∅) = 0

• µ(∪jAj) =
∑

j µ(Aj) for every countable family of disjoint sets
Aj ⊂ Ω.

(Why ‘measurable’ instead of general A ∈ 2Ω: There are subsets
that are so weird that one cannot assign a measure to them. E.g.
not all subsets of [0, 1] have a length, see also
Banach-Tarski-paradox.)

µ is a probability measure if µ(Ω) = 1
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Measure-theoretic integral

There is a precise sense in which every measure µ defines an
integral ∫

f (ω)dµ(ω) ,

for every ‘measurable function’ f , i.e., function that is sufficiently
well-behaved.

Idea: µ defines how much each point is weighted.
(Don’t ask: why not weighting each point equally much? This
already refers to a measure!)
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Examples for two measures on R

• counting measure on integers:

ν(A) = number of integers in A

• Lebesgue measure:

λ(A) := length of A
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Densities

a measure µ̃ is said to have a density f w.r.t. µ if

µ̃(A) =

∫
A
f (ω)dµ(ω) ,

for all measurable A.

Idea: µ̃ can be obtained from µ by reweighting points via the
factor f (not possible if there are sets A with µ(A) = 0 and
µ̃(A) 6= 0).
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Examples and counterexamples

• Gaussian distribution with expectation µ and standard
deviation σ on R has the density

p(x) :=
1√
2πσ

e−
1
2 ( x−µ

σ )
2

w.r.t. the Lebesgue measure

• counting measure has no density w.r.t. Lebesgue measure

• Lebesgue measure has no density w.r.t. counting measures
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Product measure

Let µ1, µ2 be measures on Ω1,Ω2, respectively. Then

(µ1 ⊗ µ2)(A1 × A2) = µ1(A1)µ2(A2) .

(Write general A ⊂ Ω1 × Ω2 as infinite disjoint union of cartesian
products)

Example: Lebegue measure on R2 (=area) is the product of
Lebesgue measure on R (length)
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Notation and terminology

• Random variables: denoted by capital letters, e.g., X ,Y ,Z
with ranges X ,Y,Z

• specific values by x ∈ X , y ∈ Y, z ∈ Z

• vector-valued random variables: (= sets of scalar random
variables) denoted by X,Y,Z with values x, y, z.

• functions vs. values of functions: by f (X ) we mean the
function x 7→ f (x)

26



Joint distributions and joint probability densities

• Probability distribution: P(X1, . . . ,Xn) describes
probabilities for events like (X1, . . . ,Xn) ∈ A ⊂ X1 × · · · × Xn

• Probability density: p(X1, . . . ,Xn) is called the density for
P(X1, . . . ,Xn) if

P{(X1, . . . ,Xn) ∈ A} =

∫
A
p(x1, . . . , xn)dµ(x1, . . . , xn) ,

where µ should be clear from the context.
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Our two main examples for densities:

• for continuous variables:

P{(X1, . . . ,Xn) ∈ A} =

∫
A
p(x1, . . . , xn)dn(x1, . . . , xn) .

(µ is the Lebesgue measure, drop it because this is the usual
integral)

• for discrete variables

P{(X1, . . . ,Xn) ∈ A} =
∑

(x1,...,xn)∈A

p(x1, . . . , xn) .

(µ is the counting measure on the discrete set X1 × · · · Xn.
Then p is also called the probability mass function.)
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Advantage of the measure theoretic integral

• common framework for discrete and continuous variables

• sums and integrals are both measure theoretic integrals

• part of the variables in p(x1, . . . , xn) may be continuous and
others discrete. Then we still have

P{(X1, . . . ,Xn) ∈ A} =

∫
A
p(x1, . . . , xn)dµ(x1, . . . , xn) ,

and µ is a tensor product that consists of Lebesgue measures
(for the continuous variables) and counting measures (on the
discrete ones).
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Examples for probability densities: discrete case

Let X attain values in {1, . . . , n} with probability 1/n each.

1 2 3 4 5
X

support of P(X)

0

Then

p(x) =

{
1/n for x ∈ {1, . . . , n}

0 for x ∈ R \ {1, . . . , n}

Then,

P(A) =

∫
p(x)dν(x) ,

where µ is the counting measure, i.e.,

ν(A) = number of integers in A

for all measurable subsets A of R.
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Examples for probability densities: continuous case

Let Y be uniformly distributed in [0, 1].

1

1

Y

support of P(Y)

0

Then

p(y) =

{
1 for y ∈ [0, 1]
0 otherwise

Then,

P(A) =

∫
p(y)dλ(y) ,

where λ is the Lebesgue measure, i.e., λ(A) is the length of A. In
this case, we often drop λ and write

P(A) =

∫
A
p(y)dy .
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Examples for probability densities: hybrid case

The product density reads

p(x , y) = p(x)p(y) .

Then,

P(A) =

∫
p(x , y)d(ν ⊗ λ)(x , y) ,

where µ⊗ λ is the product of counting measure and Lebesgue
measure, i.e.,

µ(A× B) = (number of integers in A) · (length of B) .

1

1 2 3 4 5

Y

X

support of P(X,Y)
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Difficult case

Rotate the distribution P(X ,Y ):

Z :=
1√
2

(X + Y ), W :=
1√
2

(X − Y )

1

1 2 3 4 5

Z

W

support of P(Z,W)

• there is no density w.r.t. any product measure
• Z ,W are both continuous, but the way they are related is

discrete
• for such distributions we avoid using densities and describe
P(Z ,W ) in a different way.
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Why using continuous variables at all...

...empirical data is always discrete anyway? - Then we don’t have
all these issues.

Answer: many interesting models contain continuous variables.
E.g. discretizations of bijective functions are neither injective not
surjective:

Y

X

Y

X

y=f(x)

⇒ despite all the issues with continuous variables, they are
sometimes simpler
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Expectation and covariance

• Expectation:

E[X ] :=

∫
xdP(x) =

∫
xp(x)dµ(x) .

Note: the probability distribution is also a measure, it
therefore also defines an integral!

• Covariance:

Cov [X ,Y ] := E[(X −E[X ])(Y −E[Y ])] = E[XY ]−E[X ]E[Y ]

• Variance:
V [X ] := Cov [X ,X ]

• Standard deviation:

σX :=
√
V [X ]

note: σX has the same unit as X , while V [X ] does not.
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Geometric interpretation

• Set of random variables with finite variance is a vector space V

• Variables with zero mean define a subspace V0

• covariance defines an inner product on V0

• variance is squared length, standard deviation the length
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Covariance matrix

• Cross covariance matrix:
Let X = (X1, . . . ,Xn) and Y := (Y1, . . . ,Yk) be vector-valued
variables. Then

ΣX,Y := (Cov [Xi ,Yj ])i ,j .

• Covariance matrix:

ΣX := ΣX,X
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Correlation

• correlation coefficient:

cor [X ,Y ] :=
Cov [X ,Y ]

σXσY
∈ [−1, 1]

• interpretation:
positive/negative correlation means tha6 large X tend to
occur together with large/small Y

cor [X ,Y ] = ±1 ⇔ X = αY with α 6= 0

• geometric picture:

cor [X ,Y ] = cosφ

in the space of centered variables with finite variance

Y

X

φ

38



Why the geometric picture helps

Two equivalent formulation of linear regression:

• find c ∈ R such that Y − cX has minimal variance

• find c ∈ R such that Y − cX and X are uncorrelated

equivalent because orthogonal projection minimizes the distance
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Statistical independence

X ⊥⊥ Y :⇔ P(X ∈ A,Y ∈ B) = P(X ∈ A)P(X ∈ B) ∀A,B

in terms of densities: p(X ,Y ) = p(X )p(Y )

• implies uncorrelatedness, i.e., E[XY ] = E[X ]E[Y ]

• uncorrelatedness does not imply independence:
Let P(X ,Y ) be uniform distribution on the circle, i.e.,
X 2 + Y 2 = 1, where P(X ) and P(Y ) are uniformly
distributed on [−1, 1]

Y

X

(uncorrelated because P(X ,Y ) is symmetric under reflection
X 7→ −X )
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Statistical independence

• uncorrelated and independent is equivalent for binary variables
and for jointly Gaussian variables

• joint independence:

X1, . . . ,Xn jointly ind. :⇔ p(X1, . . . ,Xn) = p(X1) · · · p(Xn) .

• conditional independence: for three sets of variables

X ⊥⊥ Y |Z if p(x, y|z) = p(x|z)p(y|z) ∀x, y, z

• difficult to test: each z defines a different distribution
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Semi-graphoid axoims

the following rules apply to conditional independence

• symmetry:
X ⊥⊥ Y |Z ⇔ Y ⊥⊥ X |Z

• decomposition:

X ⊥⊥ YW |Z ⇒ X ⊥⊥ Y |Z

• weak union:

X ⊥⊥ YW |Z ⇒ X ⊥⊥ Y |ZW

• contraction:

X ⊥⊥ Y |Z & X ⊥⊥W |ZY ⇒ X ⊥⊥ YW |Z

in distributions with strictly positive density one also has the
intersection property:

X ⊥⊥W |ZY & X ⊥⊥ Y |ZW ⇒ X ⊥⊥ YW |Z

Pearl: Causality, 2000
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Notion of a generating set for independences

Given a joint distribution P, a generating set is a list of
independences from which all the independences follow that hold
for P.
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Gaussian variables

• joint density: if ΣX,X is invertible, we have

p(x) ∼ e−
1
2

(x−µ)tC(x−µ) ,

where C := Σ−1
XX is the concentration matrix and µ is the

vector of expectations.

• conditional distributions:
Let x = (x1, x2) and µ = (µ1, µ2) and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then p(X1|x2) is a Gaussian with mean µ1 + Σ11Σ−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ−1
22 Σ21.

• conditional indepedence: can be seen from ΣXX alone
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Some information theory

• joint Shannon entropy of set of random variables:

H(X) := −
∑

x

p(x) log p(x)

(differential entropy for continuous variables
−
∫
p(x) log p(x)dx has less nice properties)

• conditional entropy:

H(Y|X) =
∑
x

p(x)H(Y|x) = −
∑

x

∑
y

p(y|x) log p(y|x) .

• additivity:

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) .

• mutual information:

I (X : Y |Z) := H(X|Z) + H(Y|Z)− H(X,Y |Z) .

zero if and only if X ⊥⊥ Y |Z.
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On the i.i.d. assumption

independently identically distributed
“Let x1, . . . , xn be i.i.d. drawn from P(X )” means that every xj is
drawn from the same distribution P(X )

• what does this mean?

• when is this justified?

• also applicable to humans although everyone is different?
E.g., let xj be the height of the jth person.
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When is height of different persons i.i.d.?

Consider two different experiments:

1 On a long hike from Denmark to the South of Italy, measure
the height of every person you meet and obtain x1, . . . , xn

2 Write all the heights of a small piece of paper, mix all the
pieces and draw xπ(1), . . . , xπ(n).

x1, . . . , xn isn’t i.i.d. (people are taller in the North).

Whether or not some data is i.i.d. is not a property of the world
but of the way we acquire the data. Here, the mixing generates the
i.i.d. property despite the different races.

de Finetti’s theorem: i.i.d. properties come from symmetries of
distributions.
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First basis for causal conclusions
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

X Y X

Z

Y X Y

1) 2) 3)

• in case 2) Reichenbach postulated X ⊥⊥ Y |Z .

• every statistical dependence is due to a causal relation, we
also call 2) “causal”.

• distinction between 3 cases is a key problem in scientific
reasoning.
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Coffee example

• coffee drinking C increases life expectancy C

• common cause “Personality” P increases coffee drinking C
but decreases (via other habits) life expectancy L

• negative correlation by common cause stronger than positive
by direct influence

C

P

L

+ −

+
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Simpson’s paradox

Fort a certain disease, observe that

• people taking a certain drug recover less often than the ones
that didn’t take it (drug seems to hurt instead of helping)

• females taking the drug recover more often than females not
taking it (drug seems to help females)

• males taking the drug recover also more often (drug seems to
help males)
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how can a drug hurt on the average when it helps males and
females?
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Resolving Simpson’s paradox

Z : gender
X : taking the drug or not
Y : recover or not

Z

X Y

• assume females take the drug more often and recover less
often.

• then gender induces a negative correlation between taking and
recovery

• negative correlation overcompensates the positive effect of the
drug
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A Language for causal conclusions
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Causal inference problem, general form Spirtes, Glymour, Scheines, Pearl

• Given variables X1, . . . ,Xn

• infer causal structure among them from n-tuples iid drawn
from P(X1, . . . ,Xn)

• causal structure = directed acyclic graph (DAG)

X1

X2

X3 X4
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Functional model of causality Pearl et al

• every node Xj is a function of its parents and an unobserved
noise term Uj

Xj

PAj (Parents of Xj)

= fj(PAj ,Uj)

• all noise terms Uj are statistically independent (causal
sufficiency)
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The meaning of the DAG and the structural equations

• result of adjusting all parents: setting parents PAj of Xj to paj
changes Xj to xj = fj(paj , uj).

• result of adjusting a subset of parents: distribution of Xj can
be computed from structural equation, details later

• adjusting children of Xj has no effect on Xj
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Justification and limits of structural equations

• independence of noise:
if some noise terms U1, . . . ,Uk were dependent, they had a
common cause that needs to occur explicitly in the model

• determinism:

• here we have indeterminism only because we don’t know the
values of the noise variables

• inconsistent with modern physics: quantum theory states
existence of absolute randomness in microphysics, two
identically prepared electrons do not necessarily hit the same
point on a screen even if all background conditions are exactly
the same
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Cornerstone of causal inference: causal Markov condition
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Causal Markov condition (4 equivalent versions) Lauritzen et al, Pearl

• existence of a functional model
• local Markov condition: every node is conditionally

independent of its non-descendants, given its parents

Xj

non-descendants

descendants

parents of Xj

(information exchange with non-descendants involves parents)
• global Markov condition: If Z d-separates X ,Y then
X ⊥⊥ Y |Z (definition follows)

• Factorization: p(X1, . . . ,Xn) =
∏

j p(Xj |PAj) (subject to a
technical condition)

(every p(Xj |PAj) describes a causal mechanism)
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d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones
are adjacent

A path q is said to be blocked by the set Z if

• q contains a chain i → m→ j or a fork i ← m→ j such
that the middle node is in Z , or

• q contains a collider i → m← j such that the middle node
is not in Z and such that no descendant of m is in Z .

Z is said to d-separate X and Y in the DAG G , formally

(X ⊥⊥ Y |Z )G

if Z blocks every path from a node in X to a node in Y .
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Example (blocking of paths)

X YZ U

path from X to Y is blocked by conditioning on U or Z or both
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Example (unblocking of paths)

X YZ U

W

• path from X to Y is blocked by ∅
• unblocked by conditioning on Z or W or both
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Example (blocking and unblocking of paths)

X YZ U

V W

several options for blocking all paths between X and Y :

(X ⊥⊥ Y |ZW )G

(X ⊥⊥ Y |ZUW )G

(X ⊥⊥ Y |VZUW )G

(X 6⊥⊥ Y |VZU)G
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Unblocking by conditioning on common effects

Berkson’s paradox (1946), selection bias. Example: X ,Y ,Z binary

X Y

Z = X or Y

• assume language skils and science skills are independent a
priori

• assume pupils go to highschool if they have good skills in
science or languages

• then there is a negative correlation between science skills and
language skills in high school
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Sometimes selection bias cannot be avoided

Hypothetical poll among students in Jyväskylä:

• ‘Do you like cultural life in Jyväskylä?’ C =Yes/No

• ‘Do you like the academic programs at the University of
Jyväskylä?’ A =Yes/No

Result: C and A are negatively correlated
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Possible explanations

• C → A: Students who enjoy cultural life spend to little time
with learning. Then they hate the academic program because
they get lost.

• A→ C : Students who like the academic program ignore
cultural life and therefore underestimate it

• A← P → C : common cause ‘Personality’ influences both

• A→ S ← C : Students who hate both leave Jyväskylä.
Therefore our poll describes P(A,C |S = 1) where S labels
whether someone stays.

⇒ extend Reichenbach’s principle by a fourth alternative: the
dataset conditions on a common effect of X and Y without
noticing
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Asymmetry under inverting arrows

Reichenbach (1956)

X ⊥⊥ Y X 6⊥⊥ Y

X 6⊥⊥ Y |Z X ⊥⊥ Y |Z
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Equivalence of Markov cond.: Local ⇒ factorization

• Proof by induction. Note the factorization is trivial for n = 1.

• Assume that local Markov for n − 1 nodes implies

p(x1, . . . , xn−1) =
n−1∏
j=1

p(xj |paj) .

• By local Markov, Xn ⊥⊥ NDn |PAn. Assume Xn is a terminal
node, i.e., it has no descendants, then
NDn = {X1, . . . ,Xn−1}. Thus

Xn ⊥⊥ {X1, . . . ,Xn−1} |PAn

and hence the general decomposition

p(x1, . . . , xn) = p(xn|x1, . . . , xn−1)p(x1, . . . , xn−1).

becomes p(x1, . . . , xn) = p(xn|pan)p(x1, . . . , xn−1).

• By induction, p(x1, . . . , xn) =
∏n

j=1 p(xj |paj) .
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Equiv: Factorization ⇒ global Markov Lauritzen: Graphical models 1996

Need to prove (X ⊥⊥ Y |Z )G ⇒ (X ⊥⊥ Y |Z )p. Rough idea:

Assume (X ⊥⊥ Y |Z )G

• define the smallest subgraph G ′ containing X ,Y ,Z
and all their ancestors

• consider moral graph G ′m (undirected graph containing
the edges of G ′ and links between all parents)

• use results that relate factorization of probabilities with
separation in undirected graphs
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Equiv: Global Markov ⇒ local Markov

Know that if Z d-separates X ,Y , then X ⊥⊥ Y |Z .
Need to show that Xj ⊥⊥ NDj |PAj .

Simply need to show that the parents PAj d-separate Xj from its
non-descendants NDj :

All paths connecting Xj and NDj include a P ∈ PAj , but never as a
collider

· → P ← Xj

Hence all paths are chains

· → P → Xj

or forks
· ← P → Xj

Therefore, the parents block every path between Xj and NDj .
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Functional model ⇒ local Markov

• augmented DAG G ′ contains unobserved noise

• local Markov-condition holds for G ′:

(i): the unexplained noise terms Uj are jointly independent, and
thus (unconditionally) independent of their non-descendants

(ii): for the Xj , we have
Xj ⊥⊥ ND ′

j |PA′
j

because Xj is a (deterministic) function of PA′
j .

• local Markov in G ′ implies global Markov in G ′

• global Markov in G ′ implies local Markov in G (proof as last
slide)
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Exercises

1 Confounding: Let X ,Y ,Z be real-valued variables coupled
by the structural equations

Z = UZ

X = αZ + UX

Y = βX + γZ + UY

Find values α, β, γ such that
• X and Y are uncorrelated but X influences Y
• X and Y are positively correlated although X has a negative

effect on Y

Prove your claims. 10 credits.
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Exercises

2 Conditional independences implied by structural
equations:
Let X ,Y ,Z be related by the structural equations

X = UX

Y = fY (X ) + UY

Z = fZ (Y ) + UZ

Show that the joint independence of UX ,UY ,UZ implies
X ⊥⊥ Z |Y without using the equivalence of different Markov
conditions. 5 credits.
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Exercises

3 Given the causal structure X → Y → Z →W . Show that the
local Markov condition togther with the semi-graphoid axioms
imply

X ⊥⊥W |Y .

5 credits
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