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Preliminarities

Interdisciplinary topic: between computer science,
mathematics, philosophy of science, relations to physics,
applications in all kind of sciences such that economy,
psychology, biology,...

Switches between vague and precise: causality is hard to
formalize. Justifying mathematical assumptions about
causality involves philosophical issues. However, once we have
stated assumptions, we prove precise mathematical theorems.
Challenging both from the conceptual and the mathematical
perspective

Ask questions on all levels: during and after the lectures
and excercises as much as you like! Gaps that appear to be
huge can usually be closed quickly. Don't ask scientific
questions by email!

Structure: the slides are carefully structured and contain the
main material. My explanations on the blackboard are
spontaneous and need not be well-structured.



Schedule

e morning sessions: lectures and (at the end) presentation of
the questions to be done until the next day exercises session.

¢ afternoon sessions:
e Monday: Questions and feedback (optional, but highly
recommended)
e Tuesday to Friday: Solution of the homework from the
previous day
e Friday: brainstorming about future directions



e Homework assignments:
50 out of 100 credits

e Presence: obligatory unless there are good reasons



Literature:

e Peter Spirtes, Clark Glymour, Richard Scheines:
Causation, Prediction, and Search, 1993

e Judea Pearl: Causality. Models, Reasoning, and
Inference, 2000.

references to articles are given on the respective slides.



Outline

® why the relation between statistics and causality is tricky

® causal inference using conditional independences
(statistical and general)

© causal inference using other properties of joint
distributions

O causal inference in time series, quantifying causal
strength

©® why causal problems matter for prediction



Part 1: the tricky relation between statistics and causality

e what’s wrong with common causal conclusions:
motivation of the problem

e mathematics tools:
measure theoy, statistical (in)dependences vs. correlations,
information theory

o first basis for correct causal conclusions:
Reichenbach’s principle of common cause

¢ a language for causal relations:
directed acyclic graphs (DAGs), structural equations

e cornerstone of causal inference:
causal Markov condition

e quantitative causal statements:
Pearl’s do calculus

e counterfactual causal statements






Can we infer causal relations from passive observations?

Recent study reports negative correlation between coffee
consumption and life expectancy

Paradox conclusion:
e drinking coffee is healthy

e nevertheless, strong coffee drinkers tend to die earlier because
they tend to have unhealthy habits

= Relation between statistical and causal dependences is tricky



Statistical relations and causal statements...

...differ by slight rewording:

¢ “The life of coffee drinkers is 3 years shorter (on the
average).”

¢ “Coffee drinking shortens the life by 3 years (on the
average).”



Statistical relations and causal statements...

...differ by slight rewording:

e “The life of coffee drinkers is 3 years shorter (on the
average).”

statistical statement:
can be tested by standard statistical tools

¢ “Coffee drinking shortens the life by 3 years (on the
average).”

causal statement:
no standard methods available, this week will give partial
answers, don't expect simple ones!
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Goal of causal inference...

...in the sense of this lecture:
Predict the effect of interventions without doing them

(e.g. what would have happened if someone had changed his/her
coffee drinking habits?)

o therefore the lecture is called “Causal inference from passive
observations”

e statistical evaluation of causal effects of true interventions is
sometimes also called causal inference, but that’s not what we
have in mind
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Example for perfect interventions

double-blind randomized medical test

e toss a coin which patient gets a medical drug and which one
the placebo

o the decision whether the drug helped is made by a doctor who
doesn’'t know who got the drug

other
% influences

drug
yes/no

recovered
yes/no



Why interventions may be difficult

e expensive:
test the impact of changing the interest rate

e unethical:

give patients a treatment that is already believed (but not
proven) to be bad

e impossible:
move the moon to check whether its really the cause of a
solar eclipse
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Difficulties in defining interventions

e Assume X is the variable gross national product

e what does ‘setting X to x' mean?

e changing X is logically impossible without the change of some
other variables (e.g., production of companies, consumption of
goods)

14



Is causal inference science at all?

“The law of causality, | believe, like much that passes muster
among philosophers, is a relic of a bygone age, surviving, like the
monarchy, only because it is erroneously supposed to do no harm.’

(Betrand Russell, 1913)
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Idea of such a skeptical view

o Interpreting phenomena in nature as causal is just an artefact
of our mind

e Physical laws are given by equations that describe relations
between observations (e.g. differential equations). Unclear
how causal language fits into such concepts.
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Our working hypotheses..

e Causal questions are scientific questions

(whether or not a medical drug helps or not is a scientific
question and definitely an important one)

e Despite all the difficulties about the philosophical
meaning of causality it’s possibe to do research on
causality

(the philosophical interpretation of quantum physics has also
caused headache since one century — nevertheless modern
technology uses it)

17



Example for causal problems from our collaborations

¢ Brain Research:
which brain region influences which one during some task?
(goal: help paralyzed patients, given: EEG or fMRI data)

¢ Biogenetics:
which genes are responsible for certain diseases?

¢ Climate research:
understand causes of global temperature fluctuations
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Measures

A measure on the set Q is a map u assigning a number to each
‘measurable’ subset A C Q such that

o u(A) € R§ Uoo
e u(@)=0

o u(UjA;) = >_; (A;) for every countable family of disjoint sets
A; C Q.

(Why ‘measurable’ instead of general A € 22: There are subsets
that are so weird that one cannot assign a measure to them. E.g.
not all subsets of [0, 1] have a length, see also
Banach-Tarski-paradox.)

 is a probability measure if 4(Q) =1
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Measure-theoretic integral

There is a precise sense in which every measure o defines an
integral

[ f@dute).

for every ‘measurable function’ f, i.e., function that is sufficiently
well-behaved.

Idea: p defines how much each point is weighted.
(Don't ask: why not weighting each point equally much? This
already refers to a measure!)
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e counting measure on integers:
v(A) = number of integers in A
e Lebesgue measure:

A(A) := length of A
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a measure i is said to have a density f w.r.t. p if

(A) = /A F(w)dp(w)

for all measurable A.

Idea: i can be obtained from p by reweighting points via the
factor f (not possible if there are sets A with (A) =0 and

fi(A) # 0).
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Examples and counterexamples

e Gaussian distribution with expectation y and standard
deviation ¢ on R has the density

1 _1(x=m)?
p(x) := \/gae 2(*5)

w.r.t. the Lebesgue measure

e counting measure has no density w.r.t. Lebesgue measure

e Lebesgue measure has no density w.r.t. counting measures
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Product measure

Let p1, 2 be measures on 1,2, respectively. Then

(11 @ p2)(A1 X Az) = pa(Ar)pz(Az) -

(Write general A C Q3 x Q as infinite disjoint union of cartesian
products)

Example: Lebegue measure on R? (=area) is the product of
Lebesgue measure on R (length)
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Notation and terminology

Random variables: denoted by capital letters, e.g., X, Y, Z
with ranges X', Y, Z

specific values by x e X,y € Y,z € Z

vector-valued random variables: (= sets of scalar random
variables) denoted by X,Y,Z with values x,y, z.

functions vs. values of functions: by f(X) we mean the
function x — f(x)
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Joint distributions and joint probability densities

¢ Probability distribution: P(Xi,...,X,) describes
probabilities for events like (X1,...,X,) EAC X X -+ X X,

¢ Probability density: p(Xi,...,X,) is called the density for
P(Xi,...,X,) if

P{(Xt,.... X)) € A} = / Pt )it 50)

where p should be clear from the context.
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Our two main examples for densities:

e for continuous variables:
P{(Xl,...,X,,)EA}:/p(xl,...,x,,)d"(xl,...,x,,).
A

(1 is the Lebesgue measure, drop it because this is the usual
integral)

e for discrete variables

P{(Xt,...,Xa) €AY = > p(x1,...,xn).
(X15---,Xn) EA

(1 is the counting measure on the discrete set X7 x - - X),.
Then p is also called the probability mass function.)
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Advantage of the measure theoretic integral

e common framework for discrete and continuous variables
e sums and integrals are both measure theoretic integrals

e part of the variables in p(x1,...,x,) may be continuous and
others discrete. Then we still have

P{(Xts.... X)) € A} = / Pt )it 50)

and p is a tensor product that consists of Lebesgue measures
(for the continuous variables) and counting measures (on the
discrete ones).
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Examples for probability densities: discrete case

Let X attain values in {1,...,n} with probability 1/n each.

support of P(X)

Then / ( )
1/n forxe{l,...,n
p(x){ 0 forxeR\{1,...,n}

Then,
P(A) = / p(x)du(x)

where p is the counting measure, i.e.,
v(A) = number of integers in A

for all measurable subsets A of R.
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Examples for probability densities: continuous case

Let Y be uniformly distributed in [0, 1].

1
support of P(Y)
0

Y

Then
[ 1 foryel0,1]
ply) = { 0  otherwise

Then,
PA) = [ b)),

where )\ is the Lebesgue measure, i.e., A(A) is the length of A. In
this case, we often drop A and write

P(A) = /Ap(y)dy-
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Examples for probability densities: hybrid case
The product density reads

p(x,y) = p(x)p(y)-

Then,
P(A) = / p(x, ¥)d(v @ N)(x,¥)

where 1 ® A is the product of counting measure and Lebesgue
measure, i.e.,

(A x B) = (number of integers in A) - (length of B) .

support of P(X,Y)
1 I
| T
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Difficult case

Rotate the distribution P(X, Y):
1

2= h

(X+Y), W .=

support of P(Z,W)

e there is no density w.r.t. any product measure

o Z W are both continuous, but the way they are related is
discrete

e for such distributions we avoid using densities and describe
P(Z, W) in a different way.
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Why using continuous variables at all...

...empirical data is always discrete anyway? - Then we don't have
all these issues.

Answer: many interesting models contain continuous variables.
E.g. discretizations of bijective functions are neither injective not
surjective:

y=f(x)

= despite all the issues with continuous variables, they are
sometimes simpler
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Expectation and covariance

Expectation:

E[X] := / xdP(x) = / xp(x)dpu(x).

Note: the probability distribution is also a measure, it
therefore also defines an integral!

Covariance:
Cov[X, Y] :=E[(X —-E[X])(Y —E[Y])] = E[XY] - E[X]E[Y]

Variance:
V[X] := Cov|[X, X]

Standard deviation:
ox =/ V[X]

note: ox has the same unit as X, while V[X] does not.
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Geometric interpretation

Set of random variables with finite variance is a vector space V

Variables with zero mean define a subspace 1V

covariance defines an inner product on Vg

variance is squared length, standard deviation the length

36



e Cross covariance matrix:
Let X = (Xy,...,X,) and Y :=(Y1,..., Y) be vector-valued
variables. Then

ZX,Y = (COV[X,', YJ]),J .

e Covariance matrix:

Yx = Zx,x
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Correlation

e correlation coefficient:
Cov[X,Y]

OX0y

cor[X, Y] := € [-1,1]

¢ interpretation:
positive/negative correlation means tha6 large X tend to
occur together with large/small Y

cor[X, Y|]=41 & X =aY witha#0

e geometric picture:

cor[X, Y] = cos ¢

in the space of centered variables with finite variance

Py

X
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Why the geometric picture helps

Two equivalent formulation of linear regression:

e find ¢ € R such that Y — ¢X has minimal variance
e find ¢ € R such that Y — ¢X and X are uncorrelated

equivalent because orthogonal projection minimizes the distance
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Statistical independence

XLY & PXeAYeB)=PXeAPXecB) VAB

in terms of densities: p(X,Y) = p(X)p(Y)
e implies uncorrelatedness, i.e., E[XY] = E[X]E[Y]

¢ uncorrelatedness does not imply independence:
Let P(X,Y) be uniform distribution on the circle, i.e.,
X? 4+ Y? =1, where P(X) and P(Y) are uniformly

distributed on [—1,1]

(uncorrelated because P(X, Y is symmetric under reflection
X = —=X)
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Statistical independence

uncorrelated and independent is equivalent for binary variables
and for jointly Gaussian variables

joint independence:

Xi,...,Xp jointly ind. & p(Xq,...,X,) = p(X1) - p(Xn) .

conditional independence: for three sets of variables
XLYI[Z if p(xylz) =p(x[z)p(ylz) Vx.y,z

difficult to test: each z defines a different distribution
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Semi-graphoid axoims

the following rules apply to conditional independence

e symmetry:
XLY|ZeY LX|Z

e decomposition:
XLYW|[Z=XL1Y|Z
e weak union:
XLYW|Z=XLY|ZzW
e contraction:
XLY|Z & XLW|ZY =X L YW|Z

in distributions with strictly positive density one also has the
intersection property:

XLWI|ZY & XLY|ZW =X L YW|Z

Pearl: Causality, 2000
42



Given a joint distribution P, a generating set is a list of
independences from which all the independences follow that hold
for P.
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Gaussian variables

e joint density: if Yx x is invertible, we have
p(x) ~ e~ 2 (=) Clx—p)

where C := Z;ol( is the concentration matrix and p is the
vector of expectations.

e conditional distributions:
Let x = (x1,x2) and p = (p1, p2) and

Y11 X
Y = .
( 201 222 )

Then p(X1|x2) is a Gaussian with mean 1 +21122_21(x2 — u2)
and covariance matrix Y11 — 21222_21221.

¢ conditional indepedence: can be seen from Lxx alone
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Some information theory

¢ joint Shannon entropy of set of random variables:
ZP ) log p(x

(differential entropy for continuous variables
— [ p(x) log p(x)dx has less nice properties)
¢ conditional entropy:

H(Y|X) = ZP H(Y|x) = ZZP y[x) log p(y|x) .

o additivity:
H(X,Y) = H(X)+ H(Y|X) = H(Y) + H(X]Y).
e mutual information:
I(X:Y|Z):=H(X|Z)+ H(Y|Z) - H(X,Y |Z).
zero if and only if X L Y |Z.
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On the i.i.d. assumption

independently identically distributed
“Let xi,...,Xxp be i.i.d. drawn from P(X)" means that every x; is
drawn from the same distribution P(X)

e what does this mean?

e when is this justified?

e also applicable to humans although everyone is different?
E.g., let x; be the height of the jth person.
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When is height of different persons i.i.d.?

Consider two different experiments:

@ On a long hike from Denmark to the South of Italy, measure

the height of every person you meet and obtain xi,...,Xx,
@® Write all the heights of a small piece of paper, mix all the
pieces and draw (1), - - -, Xr(n)-
X1,...,Xp isn't i.i.d. (people are taller in the North).

Whether or not some data is i.i.d. is not a property of the world
but of the way we acquire the data. Here, the mixing generates the
i.i.d. property despite the different races.

de Finetti's theorem: i.i.d. properties come from symmetries of
distributions.
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

GT’G‘@E o O

2) 3)

e in case 2) Reichenbach postulated X 1 Y'|Z.

e every statistical dependence is due to a causal relation, we
also call 2) “causal”.

e distinction between 3 cases is a key problem in scientific
reasoning.
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Coffee example

coffee drinking C increases life expectancy C

common cause “Personality” P increases coffee drinking C
but decreases (via other habits) life expectancy L

negative correlation by common cause stronger than positive
by direct influence
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Simpson's paradox

Fort a certain disease, observe that

e people taking a certain drug recover less often than the ones
that didn't take it (drug seems to hurt instead of helping)

o females taking the drug recover more often than females not
taking it (drug seems to help females)

e males taking the drug recover also more often (drug seems to
help males)
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how can a drug hurt on the average when it helps males and
females?
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Resolving Simpson's paradox

Z: gender
X: taking the drug or not
Y': recover or not

z

/ N\

X Y

e assume females take the drug more often and recover less
often.

o then gender induces a negative correlation between taking and
recovery

e negative correlation overcompensates the positive effect of the
drug
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Causal inference problem, general form s, ciymour, scheines, pear

e Given variables Xi,..., X,

e infer causal structure among them from n-tuples iid drawn
from P(X1,...,Xp)
e causal structure = directed acyclic graph (DAG)

¢
oo
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e every node X; is a function of its parents and an unobserved
noise term U;

O\. ’ ‘ PA; (Parents of Xj)

Xj —f(PAJ,U)

e all noise terms U; are statistically independent (causal
sufficiency)
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The meaning of the DAG and the structural equations

e result of adjusting all parents: setting parents PA; of X; to pa;
changes X; to x; = fj(paj, uj).

e result of adjusting a subset of parents: distribution of X; can
be computed from structural equation, details later

e adjusting children of X; has no effect on X;
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Justification and limits of structural equations

¢ independence of noise:
if some noise terms Uy, ..., Uy were dependent, they had a
common cause that needs to occur explicitly in the model

e determinism:

e here we have indeterminism only because we don't know the
values of the noise variables

e inconsistent with modern physics: quantum theory states
existence of absolute randomness in microphysics, two
identically prepared electrons do not necessarily hit the same
point on a screen even if all background conditions are exactly
the same
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Causal Markov condition (4 equivalent Versions) taurien et sl ear

e existence of a functional model
¢ local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

parents of X

non-descendants

o

. Q descendants

(information exchange with non-descendants involves parents)
e global Markov condition: If Z d-separates X, Y then
X 1L Y |Z (definition follows)
e Factorization: p(Xi, ..., X,) = [[; p(Xj| PA;) (subject to a
technical condition)

(every p(X;|PA;) describes a causal mechanism)
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d-separation (Pearl 1928)

Path = sequence of pairwise distinct nodes where consecutive ones
are adjacent

A path q is said to be blocked by the set Z if

e g contains a chain i — m — j or a fork i < m — j such
that the middle node is in Z, or

e g contains a collider i — m < j such that the middle node
is not in Z and such that no descendant of mis in Z.

Z is said to d-separate X and Y in the DAG G, formally
(X LY|Z2)e

if Z blocks every path from a node in X to a node in Y.
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path from X to Y is blocked by conditioning on U or Z or both
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e path from X to Y is blocked by ()
e unblocked by conditioning on Z or W or both
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several options for blocking all paths between X and Y:

(X L Y|ZW)¢
(X L Y|ZUW)g
(X L Y |VZUW)¢
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Unblocking by conditioning on common effects

Berkson's paradox (1946), selection bias. Example: X, Y, Z binary

®\®

=XorY

e assume language skils and science skills are independent a
priori

e assume pupils go to highschool if they have good skills in
science or languages

e then there is a negative correlation between science skills and
language skills in high school
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Sometimes selection bias cannot be avoided

Hypothetical poll among students in Jyvaskyla:

e ‘Do you like cultural life in Jyvaskyla?”  C =Yes/No

e ‘Do you like the academic programs at the University of
Jyvaskyld?” A =Yes/No

Result: C and A are negatively correlated

66



Possible explanations

C — A: Students who enjoy cultural life spend to little time
with learning. Then they hate the academic program because
they get lost.

A — C: Students who like the academic program ignore
cultural life and therefore underestimate it

A+ P — C: common cause ‘Personality’ influences both

A — S + C: Students who hate both leave Jyvaskyla.
Therefore our poll describes P(A, C|S = 1) where S labels
whether someone stays.

= extend Reichenbach's principle by a fourth alternative: the
dataset conditions on a common effect of X and Y without
noticing
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Reichenbach (1956)

(v
/

X1y XLY
XLY|Z X1Y|Z
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Equivalence of Markov cond.: Local = factorization

e Proof by induction. Note the factorization is trivial for n = 1.
e Assume that local Markov for n — 1 nodes implies
n—1
p(x1, -, xa1) = [ [ p(xilpaj) -
j=1

e By local Markov, X, L ND, |PA,. Assume X, is a terminal
node, i.e., it has no descendants, then
ND,7 = {Xl, e ,X,,,l}. Thus

Xo L {X1,..., Xn-1} |PA,
and hence the general decomposition
p(Xla s 7Xn) = p(Xn|Xla s aanl)P(Xla s aanl)'

becomes p(xi,...,%n) = p(xalpan)p(x1, ..., Xn-1).
e By induction, p(xi,...,xn) = [[\_; p(xlpa;) -



EqUIV: FaCtorlzation i glObal MarkOV Lauritzen: Graphical models 1996

Need to prove (X L Y |Z)g = (X L Y|Z),. Rough idea:

Assume (X L Y |Z)¢
e define the smallest subgraph G’ containing X,Y,Z
and all their ancestors
e consider moral graph G'™ (undirected graph containing
the edges of G’ and links between all parents)
e use results that relate factorization of probabilities with
separation in undirected graphs
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Equiv: Global Markov = local Markov

Know that if Z d-separates X, Y, then X 1L Y |Z.
Need to show that X; 1L ND; |PA;.

Simply need to show that the parents PA; d-separate X; from its
non-descendants ND;:

All paths connecting X; and ND; include a P € PA;, but never as a
collider

= P+ X;
Hence all paths are chains

= P =X
or forks

=P =X

Therefore, the parents block every path between X; and ND,;.
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Functional model = local Markov

augmented DAG G’ contains unobserved noise
local Markov-condition holds for G’:
(i): the unexplained noise terms U; are jointly independent, and
thus (unconditionally) independent of their non-descendants
(ii): for the X;, we have
X; 1L ND; | PA;
because X; is a (deterministic) function of PA’.
local Markov in G’ implies global Markov in G’

global Markov in G’ implies local Markov in G (proof as last
slide)
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Exercises

@® Confounding: Let X, Y, Z be real-valued variables coupled
by the structural equations

Z = Uz
X = o + Ux
Y = BX+~Z+ Uy

Find values «, 3,7 such that

e X and Y are uncorrelated but X influences Y
e X and Y are positively correlated although X has a negative
effect on Y

Prove your claims. 10 credits.
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Exercises

® Conditional independences implied by structural
equations:
Let X, Y, Z be related by the structural equations

X = Ux
Y = A (X)+ Uy
Z = fz(Y) + Uy

Show that the joint independence of Ux, Uy, Uz implies
X 1 Z|Y without using the equivalence of different Markov
conditions. 5 credits.
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© Given the causal structure X — Y — Z — W. Show that the
local Markov condition togther with the semi-graphoid axioms

imply
XL W|Y.

5 credits
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