Inferring causality from passive observations

Dominik Janzing

Max Planck Institute for Intelligent Systems
Tübingen, Germany
18.-22. August 2014

Preliminarities

- Interdisciplinary topic: between computer science, mathematics, philosophy of science, relations to physics, applications in all kind of sciences such that economy, psychology, biology,...
- Switches between vague and precise: causality is hard to formalize. Justifying mathematical assumptions about causality involves philosophical issues. However, once we have stated assumptions, we prove precise mathematical theorems.
- Challenging both from the conceptual and the mathematical perspective
- Ask questions on all levels: during and after the lectures and excercises as much as you like! Gaps that appear to be huge can usually be closed quickly. Don't ask scientific questions by email!
- Structure: the slides are carefully structured and contain the main material. My explanations on the blackboard are spontaneous and need not be well-structured.

Schedule

- morning sessions: lectures and (at the end) presentation of the questions to be done until the next day exercises session.
- afternoon sessions:
- Monday: Questions and feedback (optional, but highly recommended)
- Tuesday to Friday: Solution of the homework from the previous day
- Friday: brainstorming about future directions

Requirements for passing

- Homework assignments: 50 out of 100 credits
- Presence: obligatory unless there are good reasons

Literature:

- Peter Spirtes, Clark Glymour, Richard Scheines:

Causation, Prediction, and Search, 1993

- Judea Pearl: Causality. Models, Reasoning, and Inference, 2000.
references to articles are given on the respective slides.

Outline

(1) why the relation between statistics and causality is tricky
(2) causal inference using conditional independences (statistical and general)
(3) causal inference using other properties of joint distributions
(4) causal inference in time series, quantifying causal strength
5 why causal problems matter for prediction

Part 1: the tricky relation between statistics and causality

- what's wrong with common causal conclusions: motivation of the problem
- mathematics tools:
measure theoy, statistical (in)dependences vs. correlations, information theory
- first basis for correct causal conclusions:

Reichenbach's principle of common cause

- a language for causal relations: directed acyclic graphs (DAGs), structural equations
- cornerstone of causal inference: causal Markov condition
- quantitative causal statements:

Pearl's do calculus

- counterfactual causal statements

What's wrong with common causal conclusions

Can we infer causal relations from passive observations?

Recent study reports negative correlation between coffee consumption and life expectancy

Paradox conclusion:

- drinking coffee is healthy
- nevertheless, strong coffee drinkers tend to die earlier because they tend to have unhealthy habits

\Rightarrow Relation between statistical and causal dependences is tricky

Statistical relations and causal statements...

...differ by slight rewording:

- "The life of coffee drinkers is 3 years shorter (on the average)."
- "Coffee drinking shortens the life by 3 years (on the average)."

Statistical relations and causal statements...

...differ by slight rewording:

- "The life of coffee drinkers is 3 years shorter (on the average)."
statistical statement:
can be tested by standard statistical tools
- "Coffee drinking shortens the life by 3 years (on the average)."
causal statement:
no standard methods available, this week will give partial answers, don't expect simple ones!

Goal of causal inference...

...in the sense of this lecture:
Predict the effect of interventions without doing them
(e.g. what would have happened if someone had changed his/her coffee drinking habits?)

- therefore the lecture is called "Causal inference from passive observations"
- statistical evaluation of causal effects of true interventions is sometimes also called causal inference, but that's not what we have in mind

Example for perfect interventions

double-blind randomized medical test

- toss a coin which patient gets a medical drug and which one the placebo
- the decision whether the drug helped is made by a doctor who doesn't know who got the drug

Why interventions may be difficult

- expensive:
test the impact of changing the interest rate
- unethical:
give patients a treatment that is already believed (but not proven) to be bad
- impossible:
move the moon to check whether its really the cause of a solar eclipse

Difficulties in defining interventions

- Assume X is the variable gross national product
- what does 'setting X to x ' mean?
- changing X is logically impossible without the change of some other variables (e.g., production of companies, consumption of goods)

Is causal inference science at all?

"The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm."
(Betrand Russell, 1913)

Idea of such a skeptical view

- Interpreting phenomena in nature as causal is just an artefact of our mind
- Physical laws are given by equations that describe relations between observations (e.g. differential equations). Unclear how causal language fits into such concepts.

Our working hypotheses..

- Causal questions are scientific questions
(whether or not a medical drug helps or not is a scientific question and definitely an important one)
- Despite all the difficulties about the philosophical meaning of causality it's possibe to do research on causality
(the philosophical interpretation of quantum physics has also caused headache since one century - nevertheless modern technology uses it)

Example for causal problems from our collaborations

- Brain Research:
which brain region influences which one during some task?
(goal: help paralyzed patients, given: EEG or fMRI data)
- Biogenetics:
which genes are responsible for certain diseases?
- Climate research:
understand causes of global temperature fluctuations

Mathematical tools

Measures

A measure on the set Ω is a map μ assigning a number to each 'measurable' subset $A \subset \Omega$ such that

- $\mu(A) \in \mathbb{R}_{0}^{+} \cup \infty$
- $\mu(\emptyset)=0$
- $\mu\left(\cup_{j} A_{j}\right)=\sum_{j} \mu\left(A_{j}\right)$ for every countable family of disjoint sets $A_{j} \subset \Omega$.
(Why 'measurable' instead of general $A \in 2^{\Omega}$: There are subsets that are so weird that one cannot assign a measure to them. E.g. not all subsets of $[0,1]$ have a length, see also Banach-Tarski-paradox.)
μ is a probability measure if $\mu(\Omega)=1$

Measure-theoretic integral

There is a precise sense in which every measure μ defines an integral

$$
\int f(\omega) d \mu(\omega)
$$

for every 'measurable function' f, i.e., function that is sufficiently well-behaved.

Idea: μ defines how much each point is weighted.
(Don't ask: why not weighting each point equally much? This already refers to a measure!)

Examples for two measures on \mathbb{R}

- counting measure on integers:

$$
\nu(A)=\text { number of integers in } A
$$

- Lebesgue measure:

$$
\lambda(A):=\text { length of } A
$$

Densities

a measure $\tilde{\mu}$ is said to have a density f w.r.t. μ if

$$
\tilde{\mu}(A)=\int_{A} f(\omega) d \mu(\omega)
$$

for all measurable A.

Idea: $\tilde{\mu}$ can be obtained from μ by reweighting points via the factor f (not possible if there are sets A with $\mu(A)=0$ and $\tilde{\mu}(A) \neq 0)$.

Examples and counterexamples

- Gaussian distribution with expectation μ and standard deviation σ on \mathbb{R} has the density

$$
p(x):=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

w.r.t. the Lebesgue measure

- counting measure has no density w.r.t. Lebesgue measure
- Lebesgue measure has no density w.r.t. counting measures

Product measure

Let μ_{1}, μ_{2} be measures on Ω_{1}, Ω_{2}, respectively. Then

$$
\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right) .
$$

(Write general $A \subset \Omega_{1} \times \Omega_{2}$ as infinite disjoint union of cartesian products)

Example: Lebegue measure on \mathbb{R}^{2} (=area) is the product of Lebesgue measure on \mathbb{R} (length)

Notation and terminology

- Random variables: denoted by capital letters, e.g., X, Y, Z with ranges $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
- specific values by $x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}$
- vector-valued random variables: (= sets of scalar random variables) denoted by $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ with values $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
- functions vs. values of functions: by $f(X)$ we mean the function $x \mapsto f(x)$

Joint distributions and joint probability densities

- Probability distribution: $P\left(X_{1}, \ldots, X_{n}\right)$ describes probabilities for events like $\left(X_{1}, \ldots, X_{n}\right) \in A \subset \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}$
- Probability density: $p\left(X_{1}, \ldots, X_{n}\right)$ is called the density for $P\left(X_{1}, \ldots, X_{n}\right)$ if

$$
P\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\int_{A} p\left(x_{1}, \ldots, x_{n}\right) d \mu\left(x_{1}, \ldots, x_{n}\right)
$$

where μ should be clear from the context.

Our two main examples for densities:

- for continuous variables:

$$
P\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\int_{A} p\left(x_{1}, \ldots, x_{n}\right) d^{n}\left(x_{1}, \ldots, x_{n}\right)
$$

(μ is the Lebesgue measure, drop it because this is the usual integral)

- for discrete variables

$$
P\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in A} p\left(x_{1}, \ldots, x_{n}\right)
$$

(μ is the counting measure on the discrete set $\mathcal{X}_{1} \times \cdots \mathcal{X}_{n}$. Then p is also called the probability mass function.)

Advantage of the measure theoretic integral

- common framework for discrete and continuous variables
- sums and integrals are both measure theoretic integrals
- part of the variables in $p\left(x_{1}, \ldots, x_{n}\right)$ may be continuous and others discrete. Then we still have

$$
P\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\int_{A} p\left(x_{1}, \ldots, x_{n}\right) d \mu\left(x_{1}, \ldots, x_{n}\right),
$$

and μ is a tensor product that consists of Lebesgue measures (for the continuous variables) and counting measures (on the discrete ones).

Examples for probability densities: discrete case

Let X attain values in $\{1, \ldots, n\}$ with probability $1 / n$ each.

Then

$$
p(x)=\left\{\begin{array}{cc}
1 / n & \text { for } x \in\{1, \ldots, n\} \\
0 & \text { for } x \in \mathbb{R} \backslash\{1, \ldots, n\}
\end{array}\right.
$$

Then,

$$
P(A)=\int p(x) d \nu(x)
$$

where μ is the counting measure, i.e.,

$$
\nu(A)=\text { number of integers in } A
$$

for all measurable subsets A of \mathbb{R}.

Examples for probability densities: continuous case

Let Y be uniformly distributed in $[0,1]$.

Then

$$
p(y)=\left\{\begin{array}{cc}
1 & \text { for } y \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Then,

$$
P(A)=\int p(y) d \lambda(y)
$$

where λ is the Lebesgue measure, i.e., $\lambda(A)$ is the length of A. In this case, we often $\operatorname{drop} \lambda$ and write

$$
P(A)=\int_{A} p(y) d y .
$$

Examples for probability densities: hybrid case

The product density reads

$$
p(x, y)=p(x) p(y)
$$

Then,

$$
P(A)=\int p(x, y) d(\nu \otimes \lambda)(x, y)
$$

where $\mu \otimes \lambda$ is the product of counting measure and Lebesgue measure, i.e.,

$$
\mu(A \times B)=(\text { number of integers in } A) \cdot(\text { length of } B) .
$$

Difficult case

Rotate the distribution $P(X, Y)$:

$$
Z:=\frac{1}{\sqrt{2}}(X+Y), \quad W:=\frac{1}{\sqrt{2}}(X-Y)
$$

- there is no density w.r.t. any product measure
- Z, W are both continuous, but the way they are related is discrete
- for such distributions we avoid using densities and describe $P(Z, W)$ in a different way.

Why using continuous variables at all...

...empirical data is always discrete anyway? - Then we don't have all these issues.

Answer: many interesting models contain continuous variables.
E.g. discretizations of bijective functions are neither injective not surjective:

\Rightarrow despite all the issues with continuous variables, they are sometimes simpler

Expectation and covariance

- Expectation:

$$
\mathbb{E}[X]:=\int x d P(x)=\int x p(x) d \mu(x)
$$

Note: the probability distribution is also a measure, it therefore also defines an integral!

- Covariance:
$\operatorname{Cov}[X, Y]:=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- Variance:

$$
V[X]:=\operatorname{Cov}[X, X]
$$

- Standard deviation:

$$
\sigma_{X}:=\sqrt{V[X]}
$$

note: σ_{X} has the same unit as X, while $V[X]$ does not.

Geometric interpretation

- Set of random variables with finite variance is a vector space \mathcal{V}
- Variables with zero mean define a subspace \mathcal{V}_{0}
- covariance defines an inner product on \mathcal{V}_{0}
- variance is squared length, standard deviation the length

Covariance matrix

- Cross covariance matrix:

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\mathbf{Y}:=\left(Y_{1}, \ldots, Y_{k}\right)$ be vector-valued variables. Then

$$
\Sigma_{\mathbf{X}, \mathbf{Y}}:=\left(\operatorname{Cov}\left[X_{i}, Y_{j}\right]\right)_{i, j}
$$

- Covariance matrix:

$$
\Sigma_{\mathbf{x}}:=\Sigma_{\mathbf{x}, \mathbf{x}}
$$

Correlation

- correlation coefficient:

$$
\operatorname{cor}[X, Y]:=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}} \quad \in[-1,1]
$$

- interpretation:
positive/negative correlation means tha6 large X tend to occur together with large/small Y

$$
\operatorname{cor}[X, Y]= \pm 1 \quad \Leftrightarrow \quad X=\alpha Y \text { with } \alpha \neq 0
$$

- geometric picture:

$$
\operatorname{cor}[X, Y]=\cos \phi
$$

in the space of centered variables with finite variance

Why the geometric picture helps

Two equivalent formulation of linear regression:

- find $c \in \mathbb{R}$ such that $Y-c X$ has minimal variance
- find $c \in \mathbb{R}$ such that $Y-c X$ and X are uncorrelated
equivalent because orthogonal projection minimizes the distance

Statistical independence

$X \Perp Y \quad: \Leftrightarrow P(X \in A, Y \in B)=P(X \in A) P(X \in B) \quad \forall A, B$
in terms of densities: $p(X, Y)=p(X) p(Y)$

- implies uncorrelatedness, i.e., $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- uncorrelatedness does not imply independence: Let $P(X, Y)$ be uniform distribution on the circle, i.e., $X^{2}+Y^{2}=1$, where $P(X)$ and $P(Y)$ are uniformly distributed on $[-1,1]$

(uncorrelated because $P(X, Y)$ is symmetric under reflection $X \mapsto-X)$

Statistical independence

- uncorrelated and independent is equivalent for binary variables and for jointly Gaussian variables
- joint independence:

$$
X_{1}, \ldots, X_{n} \text { jointly ind. }: \Leftrightarrow p\left(X_{1}, \ldots, X_{n}\right)=p\left(X_{1}\right) \cdots p\left(X_{n}\right)
$$

- conditional independence: for three sets of variables

$$
\mathbf{X} \Perp \mathbf{Y} \mid \mathbf{Z} \quad \text { if } \quad p(\mathbf{x}, \mathbf{y} \mid \mathbf{z})=p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z}
$$

- difficult to test: each z defines a different distribution

Semi-graphoid axoims

the following rules apply to conditional independence

- symmetry:

$$
X \Perp Y|Z \Leftrightarrow Y \Perp X| Z
$$

- decomposition:

$$
X \Perp Y W|Z \Rightarrow X \Perp Y| Z
$$

- weak union:

$$
X \Perp Y W|Z \Rightarrow X \Perp Y| Z W
$$

- contraction:

$$
X \Perp Y|Z \quad \& \quad X \Perp W| Z Y \Rightarrow X \Perp Y W \mid Z
$$

in distributions with strictly positive density one also has the intersection property:

$$
X \Perp W|Z Y \quad \& \quad X \Perp Y| Z W \Rightarrow X \Perp Y W \mid Z
$$

Notion of a generating set for independences

Given a joint distribution P, a generating set is a list of independences from which all the independences follow that hold for P.

Gaussian variables

- joint density: if $\Sigma_{\mathbf{x}, \mathrm{X}}$ is invertible, we have

$$
p(\mathbf{x}) \sim e^{-\frac{1}{2}(\mathbf{x}-\mu)^{t} C(\mathbf{x}-\mu)}
$$

where $C:=\Sigma_{\mathbf{X} \mathbf{X}}^{-1}$ is the concentration matrix and μ is the vector of expectations.

- conditional distributions:

Let $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}\right)$ and

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

Then $p\left(\mathbf{X}_{1} \mid \mathbf{x}_{2}\right)$ is a Gaussian with mean $\mu_{1}+\Sigma_{11} \Sigma_{22}^{-1}\left(\mathbf{x}_{2}-\mu_{2}\right)$ and covariance matrix $\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

- conditional indepedence: can be seen from $\Sigma_{X X}$ alone

Some information theory

- joint Shannon entropy of set of random variables:

$$
H(\mathbf{X}):=-\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x})
$$

(differential entropy for continuous variables
$-\int p(\mathbf{x}) \log p(\mathbf{x}) d \mathbf{x}$ has less nice properties)

- conditional entropy:

$$
H(\mathbf{Y} \mid \mathbf{X})=\sum_{x} p(\mathbf{x}) H(\mathbf{Y} \mid \mathbf{x})=-\sum_{\mathbf{x}} \sum_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}) \log p(\mathbf{y} \mid \mathbf{x}) .
$$

- additivity:

$$
H(\mathbf{X}, \mathbf{Y})=H(\mathbf{X})+H(\mathbf{Y} \mid \mathbf{X})=H(\mathbf{Y})+H(\mathbf{X} \mid \mathbf{Y}) .
$$

- mutual information:

$$
I(\mathbf{X}: \mathbf{Y} \mid \mathbf{Z}):=H(\mathbf{X} \mid \mathbf{Z})+H(\mathbf{Y} \mid \mathbf{Z})-H(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z}) .
$$

zero if and only if $\mathbf{X} \Perp \mathbf{Y} \mid \mathbf{Z}$.

On the i.i.d. assumption

independently identically distributed
"Let x_{1}, \ldots, x_{n} be i.i.d. drawn from $P(X)$ " means that every x_{j} is drawn from the same distribution $P(X)$

- what does this mean?
- when is this justified?
- also applicable to humans although everyone is different?
E.g., let x_{j} be the height of the j th person.

When is height of different persons i.i.d.?

Consider two different experiments:
(1) On a long hike from Denmark to the South of Italy, measure the height of every person you meet and obtain x_{1}, \ldots, x_{n}
(2) Write all the heights of a small piece of paper, mix all the pieces and draw $x_{\pi(1)}, \ldots, x_{\pi(n)}$.
x_{1}, \ldots, x_{n} isn't i.i.d. (people are taller in the North).
Whether or not some data is i.i.d. is not a property of the world but of the way we acquire the data. Here, the mixing generates the i.i.d. property despite the different races.
de Finetti's theorem: i.i.d. properties come from symmetries of distributions.

First basis for causal conclusions

Reichenbach's principle of common cause (1956)

If two variables X and Y are statistically dependent then either

- in case 2) Reichenbach postulated $X \Perp Y \mid Z$.
- every statistical dependence is due to a causal relation, we also call 2) "causal".
- distinction between 3 cases is a key problem in scientific reasoning.

Coffee example

- coffee drinking C increases life expectancy C
- common cause "Personality" P increases coffee drinking C but decreases (via other habits) life expectancy L
- negative correlation by common cause stronger than positive by direct influence

Simpson's paradox

Fort a certain disease, observe that

- people taking a certain drug recover less often than the ones that didn't take it (drug seems to hurt instead of helping)
- females taking the drug recover more often than females not taking it (drug seems to help females)
- males taking the drug recover also more often (drug seems to help males)
how can a drug hurt on the average when it helps males and females?

Resolving Simpson's paradox

Z : gender

X : taking the drug or not
Y : recover or not

- assume females take the drug more often and recover less often.
- then gender induces a negative correlation between taking and recovery
- negative correlation overcompensates the positive effect of the drug

A Language for causal conclusions

Causal inference problem, general form spiries, Glymour, Schenes, Pearl

- Given variables X_{1}, \ldots, X_{n}
- infer causal structure among them from n-tuples iid drawn from $P\left(X_{1}, \ldots, X_{n}\right)$
- causal structure $=$ directed acyclic graph (DAG)

Functional model of causality pearl et al

- every node X_{j} is a function of its parents and an unobserved noise term U_{j}

- all noise terms U_{j} are statistically independent (causal sufficiency)

The meaning of the DAG and the structural equations

- result of adjusting all parents: setting parents $P A_{j}$ of X_{j} to $p a_{j}$ changes X_{j} to $x_{j}=f_{j}\left(p a_{j}, u_{j}\right)$.
- result of adjusting a subset of parents: distribution of X_{j} can be computed from structural equation, details later
- adjusting children of X_{j} has no effect on X_{j}

Justification and limits of structural equations

- independence of noise:
if some noise terms U_{1}, \ldots, U_{k} were dependent, they had a common cause that needs to occur explicitly in the model
- determinism:
- here we have indeterminism only because we don't know the values of the noise variables
- inconsistent with modern physics: quantum theory states existence of absolute randomness in microphysics, two identically prepared electrons do not necessarily hit the same point on a screen even if all background conditions are exactly the same

Cornerstone of causal inference: causal Markov condition

Causal Markov condition (4 equivalent versions) Lauritee e t al., Pearl

- existence of a functional model
- local Markov condition: every node is conditionally independent of its non-descendants, given its parents

(information exchange with non-descendants involves parents)
- global Markov condition: If Z d-separates X, Y then $X \Perp Y \mid Z$ (definition follows)
- Factorization: $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{j} p\left(X_{j} \mid P A_{j}\right)$ (subject to a technical condition)
(every $p\left(X_{j} \mid P A_{j}\right)$ describes a causal mechanism)

d-separation

Path $=$ sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be blocked by the set Z if

- q contains a chain $i \rightarrow m \rightarrow j$ or a fork $i \leftarrow m \rightarrow j$ such that the middle node is in Z, or
- q contains a collider $i \rightarrow m \leftarrow j$ such that the middle node is not in Z and such that no descendant of m is in Z.
Z is said to d-separate X and Y in the DAG G, formally

$$
(X \Perp Y \mid Z)_{G}
$$

if Z blocks every path from a node in X to a node in Y.

Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both

Example (unblocking of paths)

- path from X to Y is blocked by \emptyset
- unblocked by conditioning on Z or W or both

Example (blocking and unblocking of paths)

several options for blocking all paths between X and Y :
$(X \Perp Y \mid Z W)_{G}$
$(X \Perp Y \mid Z U W)_{G}$
$(X \Perp Y \mid V Z U W)_{G}$

Unblocking by conditioning on common effects

Berkson's paradox (1946), selection bias. Example: X, Y, Z binary

- assume language skils and science skills are independent a priori
- assume pupils go to highschool if they have good skills in science or languages
- then there is a negative correlation between science skills and language skills in high school

Sometimes selection bias cannot be avoided

Hypothetical poll among students in Jyväskylä:

- 'Do you like cultural life in Jyväskylä?' $\quad C=Y e s / N o$
- 'Do you like the academic programs at the University of Jyväskylä?' $\quad A=Y e s / N o$

Result: C and A are negatively correlated

Possible explanations

- $C \rightarrow A$: Students who enjoy cultural life spend to little time with learning. Then they hate the academic program because they get lost.
- $A \rightarrow C$: Students who like the academic program ignore cultural life and therefore underestimate it
- $A \leftarrow P \rightarrow C$: common cause 'Personality' influences both
- $A \rightarrow S \leftarrow C$: Students who hate both leave Jyväskylä. Therefore our poll describes $P(A, C \mid S=1)$ where S labels whether someone stays.
\Rightarrow extend Reichenbach's principle by a fourth alternative: the dataset conditions on a common effect of X and Y without noticing

Asymmetry under inverting arrows

Reichenbach (1956)

$X \Perp Y$
$X \not \Perp Y \mid Z$
$X \notin Y$
$X \Perp Y \mid Z$

Equivalence of Markov cond.: Local \Rightarrow factorization

- Proof by induction. Note the factorization is trivial for $n=1$.
- Assume that local Markov for $n-1$ nodes implies

$$
p\left(x_{1}, \ldots, x_{n-1}\right)=\prod_{j=1}^{n-1} p\left(x_{j} \mid p a_{j}\right)
$$

- By local Markov, $X_{n} \Perp N D_{n} \mid P A_{n}$. Assume X_{n} is a terminal node, i.e., it has no descendants, then $N D_{n}=\left\{X_{1}, \ldots, X_{n-1}\right\}$. Thus

$$
X_{n} \Perp\left\{X_{1}, \ldots, X_{n-1}\right\} \mid P A_{n}
$$

and hence the general decomposition

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) p\left(x_{1}, \ldots, x_{n-1}\right) .
$$

becomes $p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{n} \mid p a_{n}\right) p\left(x_{1}, \ldots, x_{n-1}\right)$.

- By induction, $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} p\left(x_{j} \mid p a_{j}\right)$.

Equiv: Factorization \Rightarrow global Markov

Need to prove $(X \Perp Y \mid Z)_{G} \Rightarrow(X \Perp Y \mid Z)_{p}$. Rough idea:
Assume $(X \Perp Y \mid Z)_{G}$

- define the smallest subgraph G^{\prime} containing X, Y, Z and all their ancestors
- consider moral graph $G^{\prime m}$ (undirected graph containing the edges of G^{\prime} and links between all parents)
- use results that relate factorization of probabilities with separation in undirected graphs

Equiv: Global Markov \Rightarrow local Markov

Know that if Z d-separates X, Y, then $X \Perp Y \mid Z$.
Need to show that $X_{j} \Perp N D_{j} \mid P A_{j}$.
Simply need to show that the parents $P A_{j}$ d-separate X_{j} from its non-descendants $N D_{j}$:
All paths connecting X_{j} and $N D_{j}$ include a $P \in P A_{j}$, but never as a collider

$$
\cdot \rightarrow P \leftarrow X_{j}
$$

Hence all paths are chains

$$
\cdot \rightarrow P \rightarrow X_{j}
$$

or forks

$$
\cdot \leftarrow P \rightarrow X_{j}
$$

Therefore, the parents block every path between X_{j} and $N D_{j}$.

Functional model \Rightarrow local Markov

- augmented DAG G^{\prime} contains unobserved noise
- local Markov-condition holds for G^{\prime} :
(i): the unexplained noise terms U_{j} are jointly independent, and thus (unconditionally) independent of their non-descendants
(ii): for the X_{j}, we have

$$
X_{j} \Perp N D_{j}^{\prime} \mid P A_{j}^{\prime}
$$

because X_{j} is a (deterministic) function of $P A_{j}^{\prime}$.

- local Markov in G^{\prime} implies global Markov in G^{\prime}
- global Markov in G^{\prime} implies local Markov in G (proof as last slide)

Exercises

(1) Confounding: Let X, Y, Z be real-valued variables coupled by the structural equations

$$
\begin{aligned}
& Z=U_{Z} \\
& X=\alpha Z+U_{X} \\
& Y=\beta X+\gamma Z+U_{Y}
\end{aligned}
$$

Find values α, β, γ such that

- X and Y are uncorrelated but X influences Y
- X and Y are positively correlated although X has a negative effect on Y
Prove your claims. 10 credits.

Exercises

(2) Conditional independences implied by structural equations:
Let X, Y, Z be related by the structural equations

$$
\begin{aligned}
X & =U_{X} \\
Y & =f_{Y}(X)+U_{Y} \\
Z & =f_{Z}(Y)+U_{Z}
\end{aligned}
$$

Show that the joint independence of U_{X}, U_{Y}, U_{Z} implies $X \Perp Z \mid Y$ without using the equivalence of different Markov conditions. 5 credits.

Exercises

(3) Given the causal structure $X \rightarrow Y \rightarrow Z \rightarrow W$. Show that the local Markov condition togther with the semi-graphoid axioms imply

$$
X \Perp W \mid Y
$$

5 credits

