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Abstract

Human pose estimation has made significant progress
during the last years. However current datasets are limited
in their coverage of the overall pose estimation challenges.
Still these serve as the common sources to evaluate, train
and compare different models on. In this paper we intro-
duce a novel benchmark “MPII Human Pose”1 that makes
a significant advance in terms of diversity and difficulty,
a contribution that we feel is required for future develop-
ments in human body models. This comprehensive dataset
was collected using an established taxonomy of over 800
human activities [1]. The collected images cover a wider
variety of human activities than previous datasets including
various recreational, occupational and householding activ-
ities, and capture people from a wider range of viewpoints.
We provide a rich set of labels including positions of body
joints, full 3D torso and head orientation, occlusion labels
for joints and body parts, and activity labels. For each im-
age we provide adjacent video frames to facilitate the use of
motion information. Given these rich annotations we per-
form a detailed analysis of leading human pose estimation
approaches and gaining insights for the success and fail-
ures of these methods.

1. Introduction
Recent pose estimation methods employ complex ap-

pearance models [2, 9, 15] and rely on learning algorithms
to estimate model parameters from the training data. The
performance of these approaches crucially depends on the
availability of the annotated training images that are rep-
resentative for the appearance of people clothing, strong
articulation, partial (self-)occlusions and truncation at im-
age borders. Although there exists training sets for special
scenarios such as sport scenes [12, 13] and upright people
[17, 2], these benchmarks are still limited in their scope and
variability of represented activities. Sport scene datasets

1Available at human-pose.mpi-inf.mpg.de.

typically include highly articulated poses, but are limited
with respect to variability of appearance since people are
typically wearing tight sports outfits. In turn, datasets such
as “FashionPose” [2] and “Armlets” [9] aim to collect im-
ages of people wearing a variety of different clothing types,
and include occlusions and truncation but are dominated by
people in simple upright standing poses.

To the best of our knowledge no attempt has been made
to establish a more representative benchmark aiming to
cover a wide pallet of challenges for human pose estima-
tion. We believe that this hinders further development on
this topic and propose a new benchmark “MPII Human
Pose”. Our benchmark significantly advances state of the
art in terms of appearance variability and complexity, and
includes more than 40,000 images of people. We used
YouTube as a data source and collected images and image
sequences using queries based on the descriptions of more
than 800 activities. This results in a diverse set of images
covering not only different activities, but indoor and out-
door scenes, a variety of imaging conditions, as well as both
amateur and professional recordings (c.f . Fig. 1). This al-
lows us to study existing body pose estimation techniques
and identify their individual failure modes.

Related work The commonly used publicly available
datasets for evaluation of 2D human pose estimation are
summarized in Tab. 1 according to the year of the cor-
responding publication. Both full body and upper body
datasets are included.

Existing benchmarks cover aspects of the human pose
estimation task such as sport scenes [12, 21], frontal-facing
people [8, 3, 17], people interacting with objects [23], pose
estimation in group photos [5] and pose estimation of peo-
ple performing synchronized activities [4].

Earlier datasets such as “Parse” [16] and “Buffy” [8] are
still commonly found in evaluations [22, 15]. However the
small training sets included in these datasets make them un-
suitable for training models with complex appearance repre-
sentations and multiple components [13, 17, 2], which have
been shown to perform best.
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Figure 1. Randomly chosen images from each of 20 activity cat-
egories of the proposed “MPII Human Pose” dataset. Image cap-
tions indicate activity category (1st row) and activity (2nd row). To
view the full dataset visit human-pose.mpi-inf.mpg.de.

Some efforts have been made to collect larger sets of
images. For example [13] extends the LSP dataset to
10, 000 images of people performing gymnastics, athletics
and parkour. [2] proposes a large “FashionPose” dataset
collected from fashion blogs. This dataset aims to cover
a wide variety in people clothing. The LSP and Fashion-
Pose datasets are complementary and focus on two different
challenges for human pose estimation: pose variability and
variability of people appearance. However since they are
collected with a specific focus in mind, these datasets do
not cover real-life challenges such as truncation, occlusions
by scene objects and variability of imaging conditions.

The works of [6] and [9] propose a challenging dataset
building on the PASCAL VOC image collection. Results
reported in [9] indicate that the best performing approaches
for pose estimation of people in the presence of occlusion
and complex appearance are under-performing on sport-
oriented datasets such as LSP [12] and vice versa. There are
qualitative differences between methods that work well for
LSP and “Armlets” datasets. On LSP the best performing
methods are typically based on flexible part-based models
that are well suited for capturing pose variability. In con-
trary on the “Armlets” dataset the best performing approach
[9] uses a set of rigid detectors for groups of parts, that are
more robust to the variability in appearance.

Our dataset is complementary to the J-HMDB dataset
[11] and provides more images and a wider coverage of ac-

Dataset #training #test img. type

Full body pose datasets
Parse [16] 100 205 diverse
LSP [12] 1,000 1,000 sports (8 types)
PASCAL Person Layout [6] 850 849 everyday
Sport [21] 649 650 sports
UIUC people [21] 346 247 sports (2 types)
LSP extended [13] 10,000 - sports (3 types)
FashionPose [2] 6,530 775 fashion blogs
J-HMDB [11] 31,838 - diverse (21 act.)

Upper body pose datasets
Buffy Stickmen [8] 472 276 TV show (Buffy)
ETHZ PASCAL Stickmen [3] - 549 PASCAL VOC
Human Obj. Int. (HOI) [23] 180 120 sports (6 types)
We Are Family [5] 350 imgs. 175 imgs. group photos
Video Pose 2 [18] 766 519 TV show (Friends)
FLIC [17] 6,543 1,016 feature movies
Sync. Activities [4] - 357 imgs. dance / aerobics
Armlets [9] 9,593 2,996 PASCAL VOC/Flickr

MPII Human Pose (this paper) 28,821 11,701 diverse (491 act.)

Table 1. Overview of the publicly available datasets for articulated
human pose estimation. For each dataset we report the number of
annotated people in training and test sets and the type of images the
set include. The numbers indicate the number of unique annotated
people without mirroring.

tivities (491 in our dataset vs. 21 in J-HMDB), whereas
J-HMDB provides densely annotated image sequences and
larger number of videos for each activity. Our dataset also
addresses a different set of challenges compared to datasets
such as “HumanEva” [19] and “Human3.6M” [10] that in-
cludes images and 3D poses of people but are captured in
the controlled indoor environments, whereas our dataset in-
cludes real-world images but provides 2D poses only.

2. Dataset

In this paper we introduce a large dataset of images that
covers a wide variety of human poses and clothing types
and includes people interacting with various objects and en-
vironments. The key rationale behind our data collection
strategy is that we want to represent both common and rare
human poses that might be missed when simply collecting
more images without aiming for good coverage. To this end,
we use a two-level hierarchy of human activities proposed
in [1] to guide the collection process. This hierarchy was
developed for the assignment of standardized energy levels
during physical activity surveys and includes 823 activities
in total of 21 different activity categories. The activities at
the first level of the hierarchy correspond to thematically re-
lated groups of activities such as “Home Activities”, “Lawn
and Garden” or “Sports”. The activities at the second level
then correspond to individual activities such as “Washing
windows”, “Picking fruit” or “Rock climbing”. Note that
using the activity hierarchy for collection has an additional
advantage that all images have an associated activity label.
As a result one can assess and analyze any performance
measure also on subsets of activities or activity categories.

human-pose.mpi-inf.mpg.de


(a) (b) (c)

Figure 2. Visualization of upper body pose variability. From left
to right we show, (a) color coding of the body parts (b) annotations
of the “Armlets” dataset [9], and (c) annotations of this dataset.

Due to the coverage of the hierarchy the images in this
dataset are representative of the diversity of human poses,
overcoming one of the main limitations of previous collec-
tions. In Fig. 2 we visualize this diversity by comparing
upper body annotations of the “Armlets” dataset Fig. 2(b)
and the proposed dataset (c). Note that although “Armlets”
contain about 13,500 images, the annotations resemble a
person with arms down along the torso (distribution of red,
cyan, green, and blue sticks).

We collect images from YouTube using queries based
on the activity descriptions. Using YouTube allows us to
access a rich collection of videos originating from various
sources, including amateur and professional recordings and
capturing a variety of public events and performances. In
Fig. 2 (c) we show the distribution of upper body poses on
our dataset. Note the variability in the location of hands
and the absence of distinctive peaks for the upper and lower
arms that are present in the case of the “Armlets” dataset.

Data collection. As a first step of the data collection we
manually query YouTube using descriptions of activities
from [1]. We select up to 10 videos for each activity filter-
ing out videos of low quality and those that do not include
people. This resulted in 3, 913 videos spanning 491 differ-
ent activities. Note that we merged a number of the original
823 activities due to high similarity between them, such as
cycling at different speeds. In the second step we manually
pick several frames with people from each video. As the fo-
cus of our benchmark is pose estimation we do not include
video frames in which people are severely truncated or in
which pose is not recognizable due to poor image quality
or small scale. We aim to select frames that either depict
different people present in the video or the same person in
a substantially different pose. In addition we restrict the
selected frames to be at least 5 seconds apart. This step
resulted to a total of 24, 920 extracted frames from all col-
lected videos. Next, we annotate all people present in the
collected images, but ignore dense people crowds in which
significant number of people are almost fully occluded. Fol-
lowing this procedure we collect images of 40, 522 people.
We allocate roughly tree quaters of the collected images for
training and use the rest for testing. Images from the same
video are either all in the training or all in the test set. This

(a) (b) (c)
Figure 3. Example of the provided annotations. Annotated are
(a) positions and visibility of the main body joints, locations of
the eyes and nose and the head bounding box (occluded joints are
shown in red), (b) occlusion of the main body parts (occluded parts
are shown with filled rectangles), and (c) 3D viewpoints of the
head and torso. On the illustration the viewpoint is shown using a
simplified body model, the front face of the model is shown in red.

results in a training/test set split of 28, 821 to 11, 701.

Data annotation. We provide rich annotations for the col-
lected images, an example can be seen in Fig. 3. Annotated
are the body joints, 3D viewpoint of the head and torso,
and position of the eyes and nose. Additionally for all body
joints and parts visibility is annotated. Following [13, 9]
we annotate joints in a “person centric” way, meaning that
the left/right joints refer to the left/right limbs of the per-
son. At test time this requires pose estimation with both a
correct localization of the limbs of a person along with the
correct match to the left/right limb. The annotations are per-
formed by in-house workers and via Amazon Mechanical
Turk (AMT). In our annotation process we build and extend
the annotation tools described in [14]. Similarly to [13, 20]
we found that effective use of AMT requires careful selec-
tion of qualified workforce. We pre-select AMT workers
based on a qualification task, and then maintain data quality
by manually inspecting the annotated data.

Experimental protocol and evaluation metrics. We de-
fine the baseline evaluation protocol on our dataset follow-
ing the current practices in the literature [13, 9, 15]. We
assume that at test time the rough location and scale of a
person are known, and we exclude the cases with multiple
people in close proximity to each other from the evaluation.
We feel that these simplifications are necessary for the rapid
adoption of the dataset as the majority of the current ap-
proaches does not address multiple people pose estimation
and does not search over people positions and scales.

We consider three metrics as indicators for the pose esti-
mation performance. The widely adopted “PCP” metric [8]
that considers a body part to be localized correctly if the
estimated body segment endpoints are within 50% of the
ground-truth segment length from their true locations. The
“PCP” metric has a drawback that foreshortened body parts
should be localized with higher precision to be considered
correct. We define a new metric denoted as “PCPm” that
uses 50% of the mean ground-truth segment length over the



Setting Torso Upper Lower Upper Fore- Head Upper Full
leg leg arm arm body body

Gkioxari et al. [9] 51.3 - - 28.0 12.4 - 26.4 -
Sapp&Taskar [17] 51.3 - - 27.4 16.3 - 27.8 -
Yang&Ramanan [22] 61.0 36.6 36.5 34.8 17.4 70.2 33.1 38.3
Pishchulin et al. [15] 63.8 39.6 37.3 39.0 26.8 70.7 39.1 42.3

Gkioxari et al. [9] + loc 65.1 - - 33.7 14.9 - 32.4 -
Sapp&Taskar [17] + loc 65.1 - - 32.6 19.2 - 33.7 -
Yang&Ramanan [22] + loc 67.2 39.7 39.4 37.4 18.6 75.7 35.8 41.4
Pishchulin et al. [15] + loc 66.6 40.5 38.2 40.4 27.7 74.5 40.6 43.9

Table 2. Pose estimation results (PCPm) on the proposed dataset
without and with using rough body location (“+ loc” in the table).

entire test set as a matching threshold, but otherwise follows
the definition of “PCP”. Finally, we consider the “PCK”
metric from [22] that measures accuracy of the localization
of the body joints. In [22] the threshold for matching of the
joint position to the ground-truth is defined as a fraction of
the person bounding box size. We use a slight modification
of the “PCK” and define the matching threshold as 50% of
the head segment length. We denote this metric as “PCKh”.
We choose to use head size because we would like to make
the metric articulation independent.

3. Analysis of the state of the art

In this section we analyse the performance of leading
human pose estimation approaches on our benchmark. We
take advantage of our rich annotations and conduct a de-
tailed analysis of various factors influencing the results,
such as foreshortening, activity and viewpoint, previously
not possible in this detail. The goal of this analysis is to
evaluate the robustness of the current approaches in various
challenges for articulated pose estimation, identify the ex-
isting limitations and stimulate further research advances.

In our analysis we consider two full body and two up-
per body pose estimation approaches. The full body ap-
proaches are the version 1.3 of the flexible mixture of parts
(FMP) approach of Yang and Ramanan [22] and the picto-
rial structures (PS) approach of Pishchulin et al. [15]. The
upper body pose estimation approaches are the multimodal
decomposable models (MODEC) approach of Sapp et al.
[17] and the Armlets approach of Gkioxari et al. [9]. In
case of FMP and MODEC we use publicly available code
and pre-trained models. The PS model used here corre-
sponds to our best model published in [15]. In case of the
Armlets model, the code and pre-trained model provided by
the authors correspond to the version from [9] that includes
the HOG features only. The performance of our version of
Armlets on the “Armlets” dataset is 3.3 PCP lower than the
version based on combination of all features.2

Note that the approaches considered in this evaluation
are the best performing ones in their respective categories.

2See Tab.1 in [9] for the comparison.

The PS approach achieves the best results to date on LSP
that is focused on the strongly articulated people [15]. The
Armlets approach is best on the “Armlets” dataset [9] that
includes large number of truncation and occlusions, and
MODEC is the best on the recent upper body pose estima-
tion dataset “FLIC” [17]. We include the FMP approach
that is widely used in the literature and typically shows com-
petitive performance for a variety of settings. In the fol-
lowing experiments we use “PCPm” as our working met-
ric, while also providing results for “PCP” and “PCKh” in
the supplementary material. While we observe little per-
formance differences when using each metric, all conclu-
sions obtained during “PCPm”-based evaluation are valid
for “PCP” and “PCKh”-based evaluations as well.
Overall performance evaluation. We begin our analy-
sis by reporting the overall pose estimation performance of
each approach and summarize the results in Tab. 2. We in-
clude both upper- and full body results to enable compari-
son across different models. The PS approach achieves the
best result of 42.3% PCPm, followed by the FMP approach
with 38.3% PCPm. On the upper body evaluation, PS per-
forms best with 39.1%, while both MODEC (27.8% PCPm)
and Armlets (26.4% PCPm) perform significantly worse.

The interesting outcome of this comparison is that both
upper body approaches MODEC and Armlets are outper-
formed by the full body approaches PS and FMP evaluated
on upper body only. This is interesting because significant
portion of the dataset (15 %) includes people that have only
upper body visible. It appears that the PS and FMP ap-
proaches are sufficiently robust to missing parts to produce
reliable estimates even in the case of lower body occlusion.

Lower part of Tab. 2 shows the results when using pro-
vided rough location of person during test time inference.
We observe, that while the performance increases for all
methods, upper body approaches profit at most, as they
heavily depend on correct torso localization. For the sake
of fair comparison among the methods, we do not use the
rough location in the following experiments. Another inter-
esting outcome is that the achieved performance is substan-
tially lower than current best results on the sports-centric
LSP dataset, but comparable to results on the “Armlets”
dataset (42.2 PCP on our benchmark (see supplemental) vs.
69.2 on LSP [15] vs. 36.2 PCP on “Armlets”). This sug-
gests that sport activities are not necessary the most diffi-
cult cases for pose estimation; challenges such as appear-
ance variability, occlusion and truncation apparently de-
serve more attention in the future.

3.1. Analysis of pose estimation challenges

We now analyse the performance of each approach with
respect to the following five factors: part occlusion, fore-
shortening, body pose, viewpoint, and activity of the per-
son. For the purpose of this analysis we define quantitative
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Figure 4. Performance (PCPm) as a function of the five complexity
measures.

complexity measures that map body image annotations to a
real value that relates to the complexity of the image with
respect to each factor.

Let us denote the annotation of the person by L =
{Lpose, Lview, Lvis}, where Lpose = {li, i = 1, . . . , N}
corresponds to the positions of body parts, Lview =
{α1, α2, α3} are the Euler angles representation of the torso
rotation, and Lvis = {(ρi, θi), i = 1, . . . , N} encodes body
part visibility via a set of occlusion labels ρi ∈ {0, 1} and
truncation labels θi ∈ {0, 1}.

We define the following complexity measures. Pose
complexity is measured as the deviation from the mean
pose on the entire dataset. We define mpose(L) =∏

(i,j)∈E pps(li|lj), where E is a set of body joints and
pps(li|lj) is a Gaussian distribution measuring relative po-
sition of the two adjacent body parts using the trans-
formed state-space representation introduced in [7]. Note
that mpose(L) corresponds to the likelihood of the pose
under the tree structured pictorial structures model [7].
The amount of foreshortening is measured by mf (L) =∑N

i=1 |d(li)−mi|/mi, where d(li) is the length of the body
part i, andmi is the mean length over the entire dataset. The
viewpoint complexity is measured by the deviation from the
frontal viewpoint: mv(L) =

∑3
i=1 αi. Finally, the amount

of occlusion and truncation correspond to the number of
occluded and truncated body parts: mocc =

∑N
i=1 ρi, and

mt =
∑N

i=1 τi.

Performance as a function of the complexity measures
To visualize the influence of the various factors on pose es-
timation performance we plot PCPm scores for the images
sorted in the order of increasing complexity (see Fig. 4). In
general and as expected, the performance drops for all mea-
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Figure 5. Performance (PCPm) on images clustered by full body
pose. Clusters are ordered by increasing mean pose complexity
and representatives are shown beneath. Results using upper body
and lower body clusters can be found in supplementary material.

sures as the complexity increases. There are interesting dif-
ferences however. Body pose complexity clearly influences
the performance of all approaches the most. The second
most influential factor is the viewpoint of the torso. For up-
per body pose estimation approaches this factor is equally
influential as body pose. The third most influential factors
is occlusion while for the full body estimation approaches
this is equally influential as the torso orientation. Contrary
to our expectation we found that the part length is less in-
fluential. Part length and in particular foreshortening effects
are considered to be the key difficulties for both pose esti-
mation. Based on this analysis the above mentioned factors
have a higher influence on the performance. The least in-
fluential factor is truncation having the smallest effect. In
the case of upper body estimation the performance even
slightly increases as the amount of truncation increases due
to two factors. As truncation if more likely for the lower
body these approaches suffer less from truncation and also
truncated poses are biased towards frontal views for which
the methods are more suited. We now discuss and analyze
each factor in more detail.

Body pose performance. As stated above the complexity
of the pose is a dominating factor for the performance of
all considered approaches. For example the PS approach
achieves 72.8% PCPm on the 1000 images with lowest pose
complexity, compared to 42.3% for the entire dataset. The
same is true for the FMP model, 63.4% PCPm on 1000 least
pose complex images vs. 38.3% overall.

To highlight variations in performance across different
body configurations we cluster the test images according
to the body pose and measure performance for each clus-
ter. We repeat this three times, clustering all body joints,
only the upper body joints, and finally the lower body joints.



In the latter two cases we measure performance on the up-
per/lower body parts only. These three clusterings corre-
spond both to different types of challenges as well as appli-
cations. Furthermore, this allows to directly compare full
vs. upper body techniques. We show the average PCPm for
all full body clusters with more than 25 examples in Fig. 5
ordering the results from left to right by increasing mean
pose complexity. Note the significant variations in perfor-
mance across different clusters. For example, results on
full body clusters vary between 77% and 2% PCPm. The
best performance is achieved on clusters with poses simi-
lar to the mean pose e.g. clusters 1 and 5 (see Figure 5).
Examining clusters with poor performance we immediately
discover several failure modes of PS and FMP approaches.
Consider the clusters 42 and 43 that correspond to people
with slightly foreshortened torso. FMP improves over PS
by 14% PCPm on cluster 25 (54% PCPm for PS vs. 68%
PCPm for FMP) and by 16% PCMm on cluster 42 (44%
PCPm for PS vs. 60% PCPm for FMP), as it can better
model torso foreshortening by representing torso as config-
uration of multiple flexible parts, whereas PS models torso
as a single rigid part. Also, the flexibility of FMP model
accounts for its better performance on frontal sitting peo-
ple (cluster 43) where FMP improves over PS by 7% PCPm
(46% PCPm for FMP vs. 39% PCPm for PS), mainly due
to better modeling of the foreshortened upper legs. How-
ever, performance on the sideview sitting people (e.g. clus-
ters 26, 30, 34, 44) is poor for all methods. Another promi-
nent failure mode for all approaches are people facing away
from the camera, e.g. cluster 50. Such part configurations
are commonly mistaken for the frontal view which leads to
a mismatch between left and right body parts resulting in
incorrect estimation. These findings demonstrate inability
of current methods to reliably discriminate between frontal
and backward views of people. Interestingly, upper body
approaches outperform full body methods on the full body
cluster 31. This is an easy case for the former group of
methods due to frontal upright upper body, but is a chal-
lenging task for the full body upproaches as legs are hard to
estimate in this case. However, both MODEC und Armlets
fail on examples when torso start deviating from canonical
orientation (e.g. clusters 20, 27, 37). At the same time both
full body methods perform better, as they are more robust
to the viewpoint changes. Surprisingly, full body methods
outperform upper body approaches on “easy” examples (c.f.
cluster 1, 3 and 5). We attribute this effect to the correct in-
tegration of signals from the legs into a more reliable upper
body estimate.

Occlusion and truncation performance. In Fig. 4 we
clearly see difference in how occlusion and truncation in-
fluences the results. As expected we observe that the per-
formance is best for fully visible people, but full visibility
does not result in success rate similar to the one we observed

for the images with simple poses, e.g. PS approach achieves
72.8% PCPm for 1000 most simple poses vs. 60% PCPm
for same amount of people with least occlusion. We ob-
serve that occlusion results in significant performance drop
on the order of 10% PCPm, e.g. in the case of PS approach
19.3% vs. 31.2% PCPm for the forearm with and without
occlusion.

As mentioned above, truncation showed the least influ-
ence overall among the discussed factors. There are at least
two reasons. First, the number of images with truncation
is limited in our dataset (about 30% of the test data contain
truncated people). Second, and more importantly, for trun-
cation one cannot annotate positions of body parts outside
of the image. Therefore the standard procedure is to exclude
truncated body parts from the evaluation. In that sense ap-
proaches that wrongly estimate the position of a truncated
body part are not punished for that. This limitation could
be addressed by requiring that models have to also report
which parts of the body are truncated.

Viewpoint performance. We evaluate the pose estima-
tion for various torso viewpoints in two ways. In Fig. 4
we show results using our standard analysis method based
on images ordered by deviation from the frontal viewpoint.
For a more detailed analysis we quantize the space of view-
points by clustering training examples according to their 3D
torso orientations. We show results for the viewpoint clus-
ters in Fig. 6 ordering them by the number of examples cor-
responding to each cluster. The number of examples per
cluster ranges between 1453 examples for the largest clus-
ter corresponding to the frontal viewpoint, and 53 examples
for the viewpoint with extreme torso tilt.

We observe that in contrast to the full body approaches,
viewpoint has profound influence on the performance of
the upper body approaches considered in our evaluation.
The performance of both Armlets and MODEC approaches
drops significantly for non-frontal views.

A per viewpoint evaluation reveals significant perfor-
mance differences across viewpoints. In Fig. 6 we show
the results for the “person centric” annotations that we use
throughout experiments in this paper and in addition for the
“observer centric” (OC) annotations, in which body limbs
are labeled as left/right based on their image location with
respect to the torso. Frontal and near-frontal viewpoints are
performing best. We observe a large drop in performance
for backward facing people when performance is measured
in “person centric” manner, which suggests that large por-
tion of incorrect pose estimates for backward views is due
to incorrect matching of left/right limbs.

We observe that all approaches handle extreme view-
points poorly. PS approach is the only one in our evalua-
tion that gracefully handles in-plane rotations (cluster 12),
whereas performance of other approaches significantly de-
grades in that case. Also, PS outperforms other methods
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Figure 7. Pose estimation results (PCPm) grouped by activity cat-
egories shown in decreasing order w.r.t. number of images.

in case of extreme torso tilts (e.g. cluster 14). The per-
formance for clusters with extreme torso rotation is on the
level of 20 - 30% PCPm for the best method, corresponding
to only 2 - 3 out of 10 body parts being localized correctly
for such viewpoints.

Part length performance. Fig. 4 also shows the influ-
ence of part length on the performance of each approach.
In this context, foreshortening is the most influential aspect
and considered an important challenge for articulated pose
estimation. The key observation is that the presence or ab-
sence of foreshortening has relatively little influence on the
result compared to the other factors such as pose and oc-
clusion. The best performing PS model is the most robust
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Figure 8. Comparison of performance (PCPm) on viewpoint (top)
and activity category clusters (bottom) before and after retraining.
See Fig. 6 for visualization of the viewpoint clusters.

Setting Torso Upper Lower Upper Fore- Head Upper Full
leg leg arm arm body body

Yang&Ramanan [22] 61.0 36.6 36.5 34.8 17.4 70.2 33.1 38.3
Yang&Ramanan [22] retrained 69.3 39.5 38.8 43.4 27.7 74.6 42.3 44.7
Pishchulin et al. [15] 63.8 39.6 37.3 39.0 26.8 70.7 39.1 42.3
Pishchulin et al. [15] retrained 68.4 42.7 42.8 42.0 29.2 76.3 42.1 46.1

Table 3. Comparison of performance (PCPm) before and after re-
training. For PCKh results see supplementary material.

to foreshortening compared to other three approaches. For
example the performance for the first 4000 images ordered
by increasing foreshortening remains nearly constant.

Activity performance. Finally, we evaluate pose estima-
tion performance as a function of the person activity. To
that end we group test images by the activity categories in
the hierarchy used for the image collection [1] and compute
PCPm for each category. The results are shown in Fig. 7,
where we order categories from left to right according to the
number of test examples.

We observe strong variation of performance for different
activity types. Best results are obtained on the sports- and
dancing-centric activities (e.g. “Sports”, “Running”, “Win-
ter Activities” and “Dancing”). Most difficult turn out to be
activities that are performed in bulky clothing and involve
use of tools (e.g. “Home Repair”) and activities performed
in cluttered scenes (e.g. “Fishing and Hunting”). MODEC
outperforms all other approaches on the “Self care” activi-
ties (examples of activities from this category are “Eating,
sitting”, “Hairstyling”, “Grooming” etc. with “Eating, sit-
ting” containing by far the largest number of images.)



Retrained models. To showcase the usefulness of the
benchmark as an analysis tool we retrain the PS and FMP
models on the training set from our benchmark. To speed
up training we consider a subset of 4000 images, which is 4
times as many images as in the LSP and 40 times as many as
in the PARSE datasets used by the publicly available PS and
FMP models, respectively. The results are shown in Tab. 3.
FMP significantly benefits from retraining (44.7 PCPm for
retrained vs. 38.3 for original). PS achieves slightly bet-
ter result, although overall improvement due to retraining is
smaller (46.1 PCPm for retrained vs. 42.3 PCPm the origi-
nal).

Although performances for FMP and PS are close over-
all, we observe interesting differences when examining per-
formance at the level of individual activities and viewpoints
(thereby exploiting the rich annotations of our benchmark).
Results are shown in Fig. 8. We observe that our publicly
available PS model is winning by a large margin on the
highly articulated categories, such as “Dancing” and “Run-
ning”. Retraining the model boosts performance on activ-
ities with less articulation but more complex appearance
(e.g. “Home Activities”, “Lawn and Garden”, “Bicycling”,
and “Occupation”). Our results show that training on the
larger amount of more variable data significantly improved
robustness of FMP to viewpoint changes. Performance of
FMP improves on the difficult viewpoints by a large mar-
gin (e.g. for viewpoint cluster 10 improvement is from 17
to 31% PCPm). Retraining improves the performance of
PS model on difficult viewpoints as well, although not as
dramatically as for FMP, likely because PS already models
in-plane rotations explicitly.

4. Conclusion

In this work we advance the state of the art in human
pose estimation by establishing new qualitatively higher
standards for evaluation and analysis of pose estimation
methods and demonstrate the most promising research di-
rections for the next years. To that end we propose a novel
“MPII Human Pose” benchmark that we collected by lever-
aging a taxonomy of activities established in the literature.
Compared to current datasets our benchmark covers signif-
icantly wider range of human poses spanning from house-
holding to recreational activities and sports. Rich labeling
of the collected data and a set of developed evaluation tools
enable comprehesive analysis which we perform to demon-
strate the strengths and weaknesses of the current methods.

Our findings indicate that current methods are signifi-
cantly challenged by cases outside their comfort zone, such
as large torso rotation and loose clothing. From all other
factors, pose complexity has the most profound effect on
the pose estimation performance. Current methods perform
best on activities with simple tight clothing (e.g. in sport
scenes), and are challenged by images with complex cloth-

ing and background clutter that are typical for many occu-
pational and outdoor activities.

We will make the data, rich annotations for training im-
ages and evaluation tools publicly available in order to en-
able detailed analysis of future pose estimation methods. To
prevent accidentally tuning on the test set, the annotations
for the test images will be withheld and made accessible
through an online evaluation tool. In the future we plan to
extend our benchmark to joint pose estimation of multiple
people and pose estimation in image sequences.
Acknowledgements. The authors are thankful to Steve
Hillyer and numerous anonymous workers on Amazon Me-
chanical Turk for the help with preparation of the dataset.
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