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Abstract

We present a new method for inferring dense data to model correspondences, fo-
cusing on the application of human pose estimation from depth images. Recent work
proposed the use of regression forests to quickly predict correspondences between depth
pixels and points on a 3D human mesh model. That work, however, used a proxy forest
training objective based on the classification of depth pixels to body parts. In contrast,
we introduce Metric Space Information Gain (MSIG), a new decision forest training ob-
jective designed to directly optimize the entropy of distributions in a metric space. When
applied to a model surface, viewed as a metric space defined by geodesic distances, MSIG
aims to minimize image-to-model correspondence uncertainty. A naïve implementation
of MSIG would scale quadratically with the number of training examples. As this is in-
tractable for large datasets, we propose a method to compute MSIG in linear time. Our
method is a principled generalization of the proxy classification objective, and does not
require an extrinsic isometric embedding of the model surface in Euclidean space. Our
experiments demonstrate that this leads to correspondences that are considerably more
accurate than state of the art, using far fewer training images.

1 Introduction
A key concern in a number of computer vision problems is how to establish correspondences
between image features and points on a model. An effective method is to use a decision forest
to discriminatively regress these correspondences [14, 24, 28]. So far, these approaches have
ignored the correlation of model points during training, or have arbitrarily pooled the model
points into large regions (parts) to allow the use of a classification training objective. In this
work, we propose the Metric Space Information Gain (MSIG) training objective for decision
forests, that, instead, naturally accounts for target dependencies during training and does not
require the use of artificial parts. Our MSIG objective assumes that the model points lie
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Figure 1: We propose a method to quickly estimate the continuous distributions on the man-
ifold or more generally the metric space induced by the surface model. This allows us to
efficiently train a random forest to predict image to model correspondences using a continu-
ous entropy objective. Notation is explained in Sec. 3.

in a space in which a metric has been defined to encode correlation between target points.
Among the larger class of problems where MSIG could apply, we focus on the challenging
application of general activity human pose estimation from single depth images.

Human pose estimation has been a very active area of research for the last two decades.
Algorithms can be classified into two main groups, namely generative [20] and discrimi-
native [26]. Generative approaches model the likelihood of the observations given a pose
estimate. The pose is typically inferred using local optimization [4, 5, 13, 22, 27] or stochas-
tic search [8, 10, 21]. Regardless of the optimization scheme used, such approaches are
susceptible to local minima and thus require good initial pose estimates.

Discriminative approaches [3, 15, 17, 29] learn a direct mapping from image features to
pose space from training data. Unfortunately, these approaches can struggle to generalize to
poses not present in the training data. The approaches in [14, 23] bypass some of these limi-
tations by discriminatively making predictions at the pixel level. This makes it considerably
easier to represent the possible variation in the training data, but yields a set of independent
local pose cues that are unlikely to respect kinematic constraints. To overcome this, recent
work has fit a generative model to these cues [1, 12, 28]. The most relevant example of
such a hybrid system is that of Taylor et al. [28] who robustly fit a mesh model to a set of
image-to-model correspondence predicted by a decision forest.

Decision forests are a classic method for inductive inference that has recently regained
popularity by yielding excellent results on a wide range of classification and regression tasks.
The canonical example in pose estimation is [23] where a forest is used to segment the human
body into parts. These parts are manually specified and the segmentation is used to define
a per-pixel classification task. To train the forest, split functions are evaluated using a parts
objective (‘PARTS’) based on discrete information gain. Specifically, the split is chosen
to reduce the Shannon entropy of the resulting body part class distributions at the left and
right child nodes. Motivated by the success of Hough forests [11] for object detection and
localization, a follow-up paper [14] directly regressed at each pixel an offset to several joint
locations. They showed, surprisingly, that retrofitting a forest for this task that had been
trained using the PARTS objective [23] outperforms forests that had been trained using a
standard regression objective based on variance minimization. The work of Taylor et al. [28]
followed suit in retrofitting a PARTS trained classification forest to predict model-image
correspondences. Despite these successes, the somewhat arbitrary choice to bootstrap using
a PARTS objective, clashes with the experience of several authors [6, 16, 18] who show that
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the objective function has a substantial influence on the generalization error of the forest.
We address this by showing that the image-to-model correspondences used in Taylor et

al. [28], can be predicted with substantially higher accuracy by training a forest using the
‘correct’ objective – an objective that chooses splits in order to minimize the uncertainty
in the desired predictive distributions. When the target outputs lie in a metric space, min-
imizing the continuous entropy in that space is the natural training objective to reduce this
uncertainty. Our main contribution is in how this continuous entropy can be computed effi-
ciently at every split function considered in the training procedure, even when using millions
of training examples. To this end, we estimate the split distributions using Kernel Density Es-
timation (KDE) [19] employing kernels that are functions of the underlying metric. To make
this computationally tractable, we first finely discretize the output space and pre-compute
a kernel matrix encoding each point’s kernel contribution to each other point. This matrix
can then be used to efficiently ‘upgrade’ any empirical distribution over this space to a KDE
approximation of the true distribution. Although staple choices exist for the kernel function
(e.g. Gaussian), its underlying metric (e.g. Euclidean distance) and discretization (e.g. uni-
form), they can also be chosen to reflect the application domain. In our domain of human
pose estimation, the targets are points on a 3D mesh model surface. Interestingly, our MSIG
objective can encode the body part classification objective [23] by employing a non-uniform
discretization. It is, however, much more natural to have a near uniform discretization over
the manifold and to use the geodesic distance metric to encode target correlation on this
manifold, see Fig. 1. As articulated shape deformations are ε−isometric with respect to the
geodesic distance, all computations in this space are independent of pose which removes the
need to find an extrinsic isometric embedding in the Euclidean space as used in [28].

Our experiments on the task of human pose estimation show a substantial improvement
in the quality of inferred correspondences from forests trained with our objective. Notably,
this is achieved with no additional computational burden since the algorithm remains the
same at test time. We further observe that with orders of magnitude less training data, we
can obtain state of the art human pose performance using the same fitting procedure as [28].

2 Forest Training
We employ the standard decision forest training algorithm and features. A forest is an en-
semble of randomly trained decision trees. Each decision tree consists of split nodes and leaf
nodes. Each split node stores a split function to be applied to incoming data. At test time,
a new input will traverse the tree branching left or right according to the test function until
a leaf node is reached. Each leaf stores a predictor, computed from the training data falling
into that leaf. At training time, each split candidate partitions the set of training examples
Q into left and right subsets. Each split function s is chosen among a pool F in order to
reduce the average uncertainty of the predictions. This is achieved using a training objective
I(s) that assigns a high score if s reduces this uncertainty. Training proceeds greedily down
the tree, locally optimizing I for each node, until some stopping criterion is met. In all of
our experiments, we use the same binary split functions as [23] which consist of fast depth
comparisons executed on a window centered at the input depth pixel xi. For more details, we
refer the reader to [7].

As our main contribution, we propose Metric Space Information Gain (MSIG) as the nat-
ural objective to learn to regress image-to-model correspondences where the target domain
is a metric space. This objective aims to reduce the continuous entropy of the data on the
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(a) (b)

Figure 2: (a) On the left we show an example of an empirical distribution and on the right our
estimated continuous distribution. (b) Examples of the continuous distributions induced by
KDE at different levels of the tree. The MSIG objective reduces the entropy of the distribu-
tions through each split resulting in increasingly uni-modal and lower entropy distributions
deeper in the tree.

metric space. In the case of a metric space induced by a reference 3D human mesh model
with standard body proportions, this translates into the correspondence uncertainty over the
model surface. To train a forest using MSIG we first need to define the metric for the target
space which determines the correlation between the targets. Instead of assuming a uni-modal
Gaussian distribution (e.g. [24]) we use KDE to approximate the density where the kernels
are functions of the metric chosen; see Fig. 2. Informally, distributions with probability
mass at nearby locations will result in lower entropies than distributions with probability
mass spread to distant locations. As we will show, MSIG outperforms the PARTS [23, 28]
and standard regression [14] objectives, and can be computed efficiently in linear time.

3 Metric Space Information Gain
We use the surface of a canonical human body to define the metric space (U,dU) of our
targets. Here, U denotes the continuous space of locations on this model and dU denotes
the geodesic distance metric on the manifold induced by the surface model. Let U denote
a random variable with probability density pU whose support is a set U and let B(s) be a
random variable that depends on a split function s and takes the values L or R. The natural
objective function used to evaluate whether a split s reduces uncertainty in this space is the
information gain,

I(s) = H(U)− ∑
i∈{L,R}

P(B(s) = i)H(U |B(s) = i) (1)

where H(U) is the differential entropy of the random variable U . For a random variable U
with distribution pU this is defined as

H(U) = EpU (u) [− log pU (u)] =−
∫
U

pU (u) log pU (u)du. (2)

In practice the information gain can be approximated using an empirical distribution
Q = {ui} drawn from pU as

I(s)≈ Î(s;Q) = Ĥ(Q)− ∑
i∈{L,R}

|Qi|
|Q|

Ĥ(Qi), (3)
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where Ĥ(Q) is some approximation to the differential entropy and ‖ · ‖ dennotes the cardi-
nality of a set. One way to approach this is to use a Monte Carlo approximation of Eq. 2

H(U)≈− 1
N ∑

ui∈Q
log pU (ui) . (4)

As the continuous distribution pU is unknown, it must also be estimated from the em-
pirical distribution Q. One way to approximate this density pU (u) is using Kernel Density
Estimation (KDE). Let N = |Q| be the number of datapoints in the sample set. The approxi-
mated density fU (u) is then given by

pU (u)' fU (u) =
1
N ∑

u j∈Q
k(u;u j), (5)

where k(u;u j) is a kernel function centered at u j. Plugging this approximation into Eq. 4,
we arrive at the KDE estimate of entropy:

ĤKDE(Q) =− 1
N ∑

ui∈Q
log

(
1
N ∑

u j∈Q
k(ui;u j)

)
. (6)

That is, one evaluates the integral at the datapoint locations ui ∈ Q in the empirical distribu-
tion, a calculation of complexity N2. To train a tree, the entropy has to be evaluated at every
node of the tree and for every split function s ∈ F . Thus this calculation could be performed
up to 2L× |F| times, where L is the maximum depth of the tree. Clearly, for big training
datasets one cannot afford to scale quadratically with the number of samples. For example,
the tree structures used in this paper are trained from 5000 images with roughly 2000 fore-
ground pixels per image, resulting in 10 million training examples. Therefore, as our main
contribution, we next show how to train a random forest with a MSIG objective that scales
linearly with the number of training examples.

To this end, we discretize the continuous space into V points U′ = (u′1,u
′
2 . . . ,u

′
V ) ⊆ U.

This discretization simplifies the metric to a matrix of distances DU =
(

dU(u′i,u′j)
)

that can
be precomputed and cached. Even better, the kernel functions can be cached for all pairs of
points (u′i,u′j) ∈ U′. For our experiments, we choose the kernel function on this space to be

an exponential k(u′i;u′j) =
1
Z exp

(
− dU(u′i,u

′
j)

2

2σ2

)
where dU(u′i,u′j) is the geodesic distance on

the model and σ is the bandwidth of the kernel. The normalization constant Z ensures that
the total amount of contribution coming from each point equals one and is thus invariant to
the discretization. The geodesic distances are pre-computed on a high resolution triangulated
mesh model using the Dikjstra algorithm [9] The discretization would ideally be uniformly
distributed over the model surface, but we find that that simply using an appropriate sampling
of the vertex locations of the original mesh sufficient to obtain good results.

In all the experiments shown in this paper we use σ = 3cm which roughly corresponds
to the average nearest neighbor distance in the empirical distributions. A detailed discussion
on kernel bandwidth selection can be found in [25]. Since the kernels fall off to zero, only
a small subset of indices Ni ⊆ {1., ...,V} indicate neighboring points {u′j} j∈Ni that con-
tribute to u′i. Hence, for efficiency, we only store the significant kernel contributions for each
discretized point u′i.

For ease of explanation in the following, we assume here that each point has a constant
number of neighbors |Ni| = M for all i ∈ {1, ...,V}. Let Ji, j denote a look-up table that
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contains the node index of the j-th neighbor of the i-th node. This leads to the following
kernel matrix that is pre-computed before training:

K =


k(u′1;u′J1,1

) k(u′1;u′J1,2
) . . . k(u′1;u′J1,M

)

k(u′2;u′J2,M
) k(u′2;u′J2,2

) . . . k(u′2;u′J2,M
)

...
. . .

...
k(u′V ;u′JV,1

) k(u′V ;u′JV,M
) . . . k(u′V ;u′JV,M

)

 . (7)

Thus, given a discretization U′ we can smooth the empirical distribution over this discretiza-
tion using the kernel contributions as

gU ′(u′i;Q)' 1
N ∑

j∈Ni

π j(Q)k(u′i;u′j) (8)

where the weights π j(Q) are the number of data points in the set Q that are mapped to the
bin center u′j. In other words, {π j(Q)}Vj=1 are the unnormalized histogram counts of the
discretization given by U′. In this way, we can use a simple histogram as our sufficient
statistic to estimate the density. The expression in Eq. 8 can be efficiently computed using
the precomputed kernel matrix K in Eq. 7

gU ′(u′i;Q) =
1
N

M

∑
m=1

πJi,m(Q)Ki,m . (9)

We can use this to further approximate the continuous KDE entropy estimate of the
underlying density in Eq. 5 as

pU (u)' fU (u;Q)' gU ′(α(u);Q) (10)

where α(u) maps u to a point in our discretization. Using this, we approximate the differen-
tial entropy of pU (u) using the discrete entropy of gU ′ defined on our discretization. Hence,
our MSIG estimate of the entropy on the metric space for an empirical sample Q is

ĤMSIG(Q) =− ∑
ui∈U′

gU ′(u′i;Q) loggU ′(u′i;Q) (11)

where the terms only need to be calculated when gU ′(u′i;Q) 6= 0.
Note that this is also equivalent to approximating the entropy defined in Eq. 2 by evaluat-

ing the integral only at the V points of the discretized space U′. Note that in contrast to Eq. 4
we need to re-weight by gU ′(u′i;Q) because we are sampling uniformly on a grid of points in
the space as opposed to Eq. 4 where the samples are drawn from the empirical distribution
Q. This is equivalent to importance sampling with a uniform proposal distribution.

The complexity of Eq. 11 is V ×M. When training a tree, each new split s requires a
linear pass through the data to compute the left and right histograms. The total complexity of
evaluating a split using Eq. 3 is thus N+V ×M�N2 allowing trees to be trained efficiently.

Finally, to compute a correspondence using a forest trained with MSIG, we follow the
lead of [28] in outfitting each leaf with a regression model.1 Briefly, the training data that
falls into a leaf defines an empirical distribution over the space and we use mean shift to find
the most prominent mode û and its mean-shift weight ω which we bundle as the regression
model (û,ω). At test time, each tree yields a separate regression model, and we predict the
correspondence û that yields the maximum weight ω .

1Naturally, we could also consider the maximum of the KDE fit but we opt to follow the strategy of [28] to
reflect the improvement due to the forest structure itself in our results.
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4 Pose Estimation
We now investigate the ability of MSIG trained forests to improve the accuracy of human-
pose estimation. Hence, we follow the procedure of Taylor et al. [28] as closely as possible.
Their procedure uses a 3D mesh model to explain a set of input depth pixels {xi}N

i=1 ⊆R3. A
vector of parameters θ ∈Rd representing a particular pose defines a global transform M that
takes any point u ∈ U on the model surface and outputs its 3D location M(u;θ) ∈ R3. The
goal is then to obtain a set of model correspondences C = {ui}N

i=1 ⊆ U and a correspond-
ing pose θ so that the transformed correspondences {M(ui;θ)}N

i=1 ⊆ R3 align with their
respective input pixels. In practice, insufficient model capacity, noisy correspondences and
local minima encountered during optimization make this goal nearly impossible to achieve.
Therefore, a carefully designed energy function is used to robustly evaluate the quality of a
pose θ and noisy correspondences C. This is given by:

E(θ ,C) = λvisEvis(θ ,C)+λpriorEprior(θ)+λintEint(θ) (12)

where the first term Evis accounts for both outliers and model visibility, Eprior encodes a
Gaussian prior on pose learnt from motion capture data and the Eint penalizes self intersec-
tions of the model. We refer the reader to [28] for more details on these terms. Standard
iterated closest point (ICP) approaches to minimizing an objective such as Eq. 12 alternate
between optimizing C and θ , but convergence is unlikely without a good initial guess of one
or the other. A key contribution of [28] was to demonstrate that the set of correspondences C
could be initialized by their random forest and the pose θ effectively optimized in ‘one shot’.
Given this initial set of correspondences, a non-linear optimization of Eq. 12 with respect to
pose θ is performed using a Quasi-Newton method (L-BFGS).

In contrast to [28], we also consider a further ICP optimization to achieve additional
gains. Holding θ fixed, we update C by finding the closest visible model point to each depth
pixel, instead of minimizing Eq. 12 exactly. This allows C to be updated efficiently using a
k-D tree [2]. To update θ , the non-linear optimizer is restarted with the new correspondences.

5 Experiments
We evaluate our approach using the same test set of 5000 synthetic depth images as used in
[28]. We examine both the accuracy of the inferred correspondences and their usefulness for
single frame human pose estimation from depth images.

5.1 Setup
Forests. We use two forests in our experiments: MSIG and PARTS, indicating respectively
that they were trained with our proposed MSIG objective or the standard PARTS based ob-
jective of [23]. Both forests contain three trees and were trained to depth 20. To learn the
structure and split functions of each tree we use 5000 synthetic images per tree. The extra
complexity in training a MSIG tree resulted in them taking roughly three times as long as the
PARTS trees. This complexity does not exist at test time and thus speeds reported in [28] are
obtainable using either type of tree. To populate the leaf distributions in both types of trees,
we replicate the strategy of [28]: we push the training data from 20000 (depth, correspon-
dences) image pairs through the trees and find the mode of the distribution in the extrinsic
isometric embedding of a human shape (the ‘Vitruvian’ pose) using mean-shift.
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Figure 3: Correspondence error comparison of PARTS forest with the proposed MSIG forest.
We evaluate the accuracy for forests of depths 17,18,19,20. It can be observed that our
proposed method consistently produces considerably more accurate correspondences.

Pose estimation. For human pose estimation we parametrize a model using a skeleton. We
predict the following 19 body joints: head, neck, shoulders, elbows, wrists, hands, knees,
ankles, feet, and hips (left, right, center).
Metrics. To evaluate the accuracy of the inferred correspondences, we use the correspon-
dence error defined as the geodesic distance between the prediction and the ground truth
model location. We use a model with standard proportions and thus a correspondence error
of 25 cm is roughly the length of the lower arm. To measure pose accuracy we use the chal-
lenging worst joint error metric introduced in [28]: the proportion of test scenes that have all
predicted joints within a certain Euclidean distance from their ground truth locations.

5.2 Results
We evaluate the performance of our forest regressors to predict dense image to model cor-
respondences. We quantify the proportion of predicted correspondences with an error less
than a certain distance. We find that correspondences with an error of less than 15 cm tend to
be useful for pose estimation whereas those with higher errors are usually treated as outliers.
In Fig. 3 we show the correspondence accuracy for both the MSIG forest and PARTS forest
at depths of 17,18,19 and 20. As it can be seen, the MSIG forest produces correspondences
that are consistently more accurate than those produced from the PARTS forest. This is very
encouraging since forests trained using a PARTS objective had previously shown state of the
art performance, far superior to those using other objectives such as the Hough-regression
[14]. We attribute the better performance of our approach to the fact that MSIG favors dis-
tributions with mass concentrated (in the sense of the defined metric) in close locations.

Although the inferred dense correspondences can be used for a large number of tasks,
we consider the task of single frame pose estimation as a motivational example. Therefore,
we also show the impact in the pose accuracy again for forests of depth 17,18,19 and 20. As
one would expect, better correspondences translate into more accurate pose estimates. As
can be seen in Fig. 4, the MSIG forest produces a small but significant improvement w.r.t.
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Figure 4: Pose accuracy comparison using correspondences from both PARTS and proposed
MSIG forests at depths 17,18,19 and 20. For both forests, we use the pose estimation
algorithm of [28] as explained in Sec. 4 and evaluate using the worst joint error metric.

to the PARTS forest. The smaller gains in pose accuracy are expected as the energy of [28]
is designed to be robust to outliers from their forest. We also compare in Fig. 5 directly
to the results provided by [28], which appears to be the state of the art for single frame
pose estimation from depth images. Despite our MSIG forest using orders of magnitude less
training images (300K images vs. 5K images per tree), we achieve equivalent performance.

We further demonstrate that our correspondences can be used to initialize classical regis-
tration methods such as articulated ICP as explained in Sec 4. Contrary to what was alluded
to in [28] we find that using just 10 such ICP alternations provides an additional performance
gain of up to 10% with both PARTS and MSIG correspondences as demonstrated in Fig. 5.
Furthermore, it can be seen that the gap between the MSIG and PARTS is not washed out
by this downstream ICP processing. The resulting MSIG poses after ICP refinement, thus
represent the state of the art on this dataset.
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Figure 5: Left: Pose accuracy of our MSIG forest trained with 5000 images per tree com-
pared to accuracy reported by [28] which used 300,000 training images. Right: Pose accu-
racy for both PARTS and MSIG forests after 10 iterations of ICP. Note that the curve labelled
MSIG in both the left (solid red) and right (dashed red) plots are the same.
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6 Conclusion
We have introduced MSIG, an objective function that evaluates a split function’s ability
to reduce the uncertainty over an arbitrary metric space using kernel density estimation.
Using a discretization of this space, an efficient approximation to MSIG was developed as
to facilitate its use in training random forests. Although the general framework can be tuned
through the specification of an appropriate metric space, kernel function and discretization,
natural choices exist making this approach widely applicable.

We employed MSIG in the context of human pose estimation to both simplify and en-
hance the inference of dense data to model correspondences by avoiding two arbitrary requi-
sites of previous work: (i) our work does not require a segmentation of the human body into
parts, and (ii) it does not require an extrinsic isometric embedding of the human shape. A
number of experiments show that the more principled MSIG objective allows the inference of
superior correspondences compared to those provided by standard training objectives. Addi-
tionally, these results translate into state of the art accuracy for single frame pose estimation
using far fewer training images.
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