MAX-PLANCK-GESELLSCHAFT

Motivation

- Objects are inherently *3-dimensional*
- 3D object representations provide:
- *Compact* and *accurate* approximation of the physical world
- Higher level vision tasks can benefit from *expressive* object detectors:
- Angular accurate viewpoints
- 3D parts consistent across views
- *State-of-the-art* detectors are modeled in 2D
- 3D object detectors lack detection performance

Contributions

- → *3D version* of the Deformable Part Model [2] capable of:
- Richer object hypotheses (beyond 2D BB)
- Robust matching to image evidence
- *Richer* object hypotheses:
- Viewpoint estimation of arbitrary granularity
- Consistent parts across views
- **Favorable** performance:
- State-of-the-art viewpoint estimation results
- Competitive 2D object localization results
- Jointly optimize for object localization and continuous viewpoint estimation

3D pose estimation results

*Note the color coded part correspondences 4000 ¹Max Planck Institute for Informatics, Saarbrücken, Germany

•	Pa	rt ir
	►	Ac
		in
		Pro

3D²PM - 3D Deformable Part Models

²Max Planck Institute for Intelligent Systems, Tübingen, Germany

Model training

• Structured output SVM with margin rescaling Jointly address object localization and viewpoint estimation $\Delta_{VOC}(y,\bar{y}) = 1 - \frac{y}{k}$

Acknowledgements: This work has been supported by the Max Planck Center for Visual Computing and Communication. We thank M. Zeeshan Zia for his help in conducting wide baseline matching experiments.

Bojan Pepik¹ Peter Gehler² Michael Stark^{1,3} Bernt Schiele¹

[1] B. Pepik, M. Stark, P. Gehler, B. Schiele Teaching 3D Geometry to Deformable Part models CVPR'12 [2] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan Object Detection with Discriminatively Trained Part Based Models PAMI'10 [3] J. Liebelt, C. Schmid Multi-view Object Class Detection With A 3D Geometric Model CVPR'10 [4] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. Revisiting 3D Geometric Models for Accurate and Object Shape and Pose 3DRR'11 [5] D. Glasner, M. Galun, S. Alpert, R. Basri, G. Shakhnarovich Viewpoint-Aware Object Detection and Pose Estimation ICCV'11 [6] N. Payet, S. Todorovic, From Contours to 3D Object Detection and Pose Estimation ICCV'11 [7] R. J. López-Sastre, T. Tuytelaars, S. Savarese. Deformable Part Models Revisited: A Performance Evaluation for Object Category Pose Estimation CORP'11

max planck institut informatik

Our **3D²PM²C**erean provide fine viewpoint

AP / MAE at 5° #atomic opera	tions
3D²PM-C b36 full inference 99.2 / 4.7 2.20 x 10 ¹⁰	
3D ² PM-C b36 coarse to fine 99.0 / 7.0 0.48 x 10 ¹	
3D²PM-C b12 97.6 / 7.5 2.20 x 10 ¹	0
3D²PM-C b18 98.0 / 6.9 2.20 x 10 ¹	0