Header logo is
Institute Talks

Programming Intelligence through Geometry, Topology, and Anisotropy

Talk
  • 28 June 2019 • 11:00 12:00
  • Prof. Shu Yang
  • 2P04

Geometry is concerned with the properties of configurations of points, lines, and circles, while topology is concerned with space, dimension, and transformation. Geometry is also materials independent and scale invariant. By introducing holes and cuts in 2D sheets, we demonstrate dramatic shape change and super-conformability via expanding or collapsing of the hole arrays without deforming individual lattice units. When choosing the cuts and geometry correctly, we show folding into the third dimension, known as kirigami. The kirigami structures can be rendered pluripotent, that is changing into different 3D structures from the same 2D sheet. We explore their potential applications in energy efficient building facade, super-stretchable and shape conformable energy storage devices and medical devices, as well as bioinspired robotics. Programmable shape-shifting materials can take different physical forms to achieve multifunctionality in a dynamic and controllable manner. Through designs of geometric surface patterns, e.g. microchannels, we program the orientational elasticity in liquid crystal elastomers (LCEs), to direct folding of the 2D sheets into 3D shapes, which can be triggered by heat, light, and electric field. Taking this knowledge of guided inhomogeneous local deformations in LCEs, we then tackle the inverse problem – pre-programming geometry on a flat sheet to take an arbitrary desired 3D shape. Lastly, I will show the prospective of taking geometry to create smart fabrics and tendon-like filaments for soft robotic applications.

Thermoacoustic instabilities: various approaches to estimation and control

Talk
  • 01 July 2019 • 14:00 15:00
  • Florent Di Meglio
  • MPI-IS Stuttgart, Heisenbergstr. 3, seminar room 2P4

Reducing the size and emissions of gas turbine engines used in the aeronautics industry forces manufacturers to explore new operating conditions. An undesirable phenomenon called thermo-acoustic instabilities may occur, caused by the coupling between combustion dynamics and the acoustics of the combustion chamber. To help predict, detect and suppress it, we explore various approaches. We will discuss the design of observers for infinite-dimensional systems, Fourier-based reduced-order modeling as well as a Machine-Learning approach based on high-fidelity simulation data.

Organizers: Sebastian Trimpe Mona Buisson-Fenet

Uri Shalit - TBA

IS Colloquium
  • 08 July 2019 • 11:15 a.m. 12:15 a.m.
  • Uri Shalit

Organizers: Krikamol Muandet

Control Systems for a Surgical Robot on the Space Station

IS Colloquium
  • 23 October 2018 • 16:30 17:30
  • Chris Macnab
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

As part of a proposed design for a surgical robot on the space station, my research group has been asked to look at controls that can provide literally surgical precision. Due to excessive time delay, we envision a system with a local model being controlled by a surgeon while the remote system on the space station follows along in a safe manner. Two of the major design considerations that come into play for the low-level feedback loops on the remote side are 1) the harmonic drives in a robot will cause excessive vibrations in a micro-gravity environment unless active damping strategies are employed and 2) when interacting with a human tissue environment the robot must apply smooth control signals that result in precise positions and forces. Thus, we envision intelligent strategies that utilize nonlinear, adaptive, neural-network, and/or fuzzy control theory as the most suitable. However, space agencies, or their engineering sub-contractors, typically provide gain and phase margin characteristics as requirements to the engineers involved in a control system design, which are normally associated with PID or other traditional linear control schemes. We are currently endeavouring to create intelligent controls that have guaranteed gain and phase margins using the Cerebellar Model Articulation Controller.

Organizers: Katherine J. Kuchenbecker


Learning to Act with Confidence

Talk
  • 23 October 2018 • 12:00 13:00
  • Andreas Krause
  • MPI-IS Tübingen, N0.002

Actively acquiring decision-relevant information is a key capability of intelligent systems, and plays a central role in the scientific process. In this talk I will present research from my group on this topic at the intersection of statistical learning, optimization and decision making. In particular, I will discuss how statistical confidence bounds can guide data acquisition in a principled way to make effective and reliable decisions in a variety of complex domains. I will also discuss several applications, ranging from autonomously guiding wetlab experiments in protein function optimization to safe exploration in robotics.


  • Ravi Haksar
  • MPI-IS Stuttgart, seminar room 2P4

What do forest fires, disease outbreaks, robot swarms, and social networks have in common? How can we develop a common set of tools for these applications? In this talk, I will first introduce a modeling framework that describes large-scale phenomena and which is based on the idea of "local interactions." I will then describe my work on creating estimation and control methods for a single agent and for a cooperative team of autonomous agents. In particular, these algorithms are scalable as the solution does not change if the number of agents or environment size changes. Forest fires and the 2013 Ebola outbreak in West Africa are presented as examples.

Organizers: Sebastian Trimpe


  • Charlotte Le Mouel
  • 2P4, Heisenbergstr. 3, 70188 Stuttgart

Theories of motor control in neuroscience usually focus on the role of the nervous system in the coordination of movement. However, the literature in sports science as well as in embodied robotics suggests that improvements in motor performance can be achieved through an improvement of the body mechanical properties themselves, rather than only the control. I therefore developed the thesis that efficient motor coordination in animals and humans relies on the adjustment of the body mechanical properties to the task at hand, by the postural system.

Organizers: Charlotte Le Mouel Alexander Badri-Sprowitz


  • Mario Herger
  • Kupferbau Universität Tübingen, Hörsaal 22

Über 1.000 selbstfahrende Testfahrzeuge von insgesamt 57 Unternehmen fahren im Silicon Valley bereits herum, und nun steht die Google-Schwester Waymo davor, 82.000 Robotertaxis auf die Straßen zu bringen. Und das nicht irgendwann, sondern noch dieses Jahr. Währenddessen rüstet sich Tesla mit seinem vollelektrischen Model 3 für einen Frontalangriff auf die deutschen Hersteller. In den USA sind die Verkaufszahlen deutscher Mittelklassewagen im Vergleich zum Vorjahr um 29 Prozent eingebrochen.


Still, In Motion

Talk
  • 12 October 2018 • 11:00 12:00
  • Michael Cohen

In this talk, I will take an autobiographical approach to explain both where we have come from in computer graphics from the early days of rendering, and to point towards where we are going in this new world of smartphones and social media. We are at a point in history where the abilities to express oneself with media is unparalleled. The ubiquity and power of mobile devices coupled with new algorithmic paradigms is opening new expressive possibilities weekly. At the same time, these new creative media (composite imagery, augmented imagery, short form video, 3D photos) also offer unprecedented abilities to move freely between what is real and unreal. I will focus on the spaces in between images and video, and in between objective and subjective reality. Finally, I will close with some lessons learned along the way.


  • Mariacarla Memeo
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

The increasing availability of on-line resources and the widespread practice of storing data over the internet arise the problem of their accessibility for visually impaired people. A translation from the visual domain to the available modalities is therefore necessary to study if this access is somewhat possible. However, the translation of information from vision to touch is necessarily impaired due to the superiority of vision during the acquisition process. Yet, compromises exist as visual information can be simplified, sketched. A picture can become a map. An object can become a geometrical shape. Under some circumstances, and with a reasonable loss of generality, touch can substitute vision. In particular, when touch substitutes vision, data can be differentiated by adding a further dimension to the tactile feedback, i.e. extending tactile feedback to three dimensions instead of two. This mode has been chosen because it mimics our natural way of following object profiles with fingers. Specifically, regardless if a hand lying on an object is moving or not, our tactile and proprioceptive systems are both stimulated and tell us something about which object we are manipulating, what can be its shape and size. The goal of this talk is to describe how to exploit tactile stimulation to render digital information non visually, so that cognitive maps associated with this information can be efficiently elicited from visually impaired persons. In particular, the focus is to deliver geometrical information in a learning scenario. Moreover, a completely blind interaction with virtual environment in a learning scenario is something little investigated because visually impaired subjects are often passive agents of exercises with fixed environment constraints. For this reason, during the talk I will provide my personal answer to the question: can visually impaired people manipulate dynamic virtual content through touch? This process is much more challenging than only exploring and learning a virtual content, but at the same time it leads to a more conscious and dynamic creation of the spatial understanding of an environment during tactile exploration.

Organizers: Katherine J. Kuchenbecker


  • Gokhan Serhat
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Continuum structures need to be designed for optimal vibrational characteristics in various fields. Recent developments in the finite element analysis (FEA) and numerical optimization methods allow creating more accurate computational models, which favors designing superior systems and reduces the need for experimentation. In this talk, I will present my work on FEA-based optimization of thin shell structures for improved dynamic properties where the focus will be on laminated composites. I will initially explain multi-objective optimization strategies for enhancing load-carrying and vibrational performance of plate structures. The talk will continue with the design of curved panels for optimal free and forced dynamic responses. After that, I will present advanced methods that I developed for modeling and optimization of variable-stiffness structures. Finally, I will outline the state-of-the-art techniques regarding numerical simulation of the finger in contact with surfaces and propose potential research directions.

Organizers: Katherine J. Kuchenbecker


Soft Feel by Soft Robotic Hand: New way of robotic sensing

IS Colloquium
  • 04 October 2018 • 13:30 - 04 September 2018 • 14:30
  • Prof. Koh Hosoda
  • MPI-IS Stuttgart, Werner-Köster lecture hall

This lecture will show some interesting examples how soft body/skin will change your idea of robotic sensing. Soft Robotics does not only discuss about compliance and safety; soft structure will change the way to categorize objects by dynamic exploration and enables the robot to learn sense of slip. Soft Robotics will entirely change your idea how to design sensing and open up a new way to understand human sensing.

Organizers: Ardian Jusufi


  • Prof. Peter Pott
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

The FLEXMIN haptic robotic system is a single-port tele-manipulator for robotic surgery in the small pelvis. Using a transanal approach it allows bi-manual tasks such as grasping, monopolar cutting, and suturing with a footprint of Ø 160 x 240 mm³. Forces up to 5 N in all direction can be applied easily. In addition to provide low latency and highly dynamic control over its movements, high-fidelity haptic feedback was realised using built-in force sensors, lightweight and friction-optimized kinematics as well as dedicated parallel kinematics input devices. After a brief description of the system and some of its key aspects, first evaluation results will be presented. In the second half of the talk the Institute of Medical Device Technology will be presented. The institute was founded in July 2017 and has ever since started a number of projects in the field of biomedical actuation, medical systems and robotics and advanced light microscopy. To illustrate this a few snapshots of bits and pieces will be presented that are condensation nuclei for the future.

Organizers: Katherine J. Kuchenbecker