Header logo is
Institute Talks

Learning Control for Intelligent Physical Systems

  • 13 July 2018 • 14:15 14:45
  • Dr. Sebastian Trimpe
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

Modern technology allows us to collect, process, and share more data than ever before. This data revolution opens up new ways to design control and learning algorithms, which will form the algorithmic foundation for future intelligent systems that shall act autonomously in the physical world. Starting from a discussion of the special challenges when combining machine learning and control, I will present some of our recent research in this exciting area. Using the example of the Apollo robot learning to balance a stick in its hand, I will explain how intelligent agents can learn new behavior from just a few experimental trails. I will also discuss the need for theoretical guarantees in learning-based control, and how we can obtain them by combining learning and control theory.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

Household Assistants: the Path from the Care-o-bot Vision to First Products

  • 13 July 2018 • 14:45 15:15
  • Dr. Martin Hägele
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

In 1995 Fraunhofer IPA embarked on a mission towards designing a personal robot assistant for everyday tasks. In the following years Care-O-bot developed into a long-term experiment for exploring and demonstrating new robot technologies and future product visions. The recent fourth generation of the Care-O-bot, introduced in 2014 aimed at designing an integrated system which addressed a number of innovations such as modularity, “low-cost” by making use of new manufacturing processes, and advanced human-user interaction. Some 15 systems were built and the intellectual property (IP) generated by over 20 years of research was recently licensed to a start-up. The presentation will review the path from an experimental platform for building up expertise in various robotic disciplines to recent pilot applications based on the now commercial Care-O-bot hardware.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

The Critical Role of Atoms at Surfaces and Interfaces: Do we really have control? Can we?

  • 13 July 2018 • 15:45 16:15
  • Prof. Dr. Dawn Bonnell
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

With the ubiquity of catalyzed reactions in manufacturing, the emergence of the device laden internet of things, and global challenges with respect to water and energy, it has never been more important to understand atomic interactions in the functional materials that can provide solutions in these spaces.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

Interactive Visualization – A Key Discipline for Big Data Analysis

  • 13 July 2018 • 15:00 15:30
  • Prof. Dr. Thomas Ertl
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

Big Data has become the general term relating to the benefits and threats which result from the huge amount of data collected in all parts of society. While data acquisition, storage and access are relevant technical aspects, the analysis of the collected data turns out to be at the core of the Big Data challenge. Automatic data mining and information retrieval techniques have made much progress but many application scenarios remain in which the human in the loop plays an essential role. Consequently, interactive visualization techniques have become a key discipline of Big Data analysis and the field is reaching out to many new application domains. This talk will give examples from current visualization research projects at the University of Stuttgart demonstrating the thematic breadth of application scenarios and the technical depth of the employed methods. We will cover advances in scientific visualization of fields and particles, visual analytics of document collections and movement patterns as well as cognitive aspects.

Organizers: Katherine Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

Imitation of Human Motion Planning

  • 27 July 2018 • 12:00 12:45
  • Jim Mainprice
  • N3.022 (Aquarium)

Humans act upon their environment through motion, the ability to plan their movements is therefore an essential component of their autonomy. In recent decades, motion planning has been widely studied in robotics and computer graphics. Nevertheless robots still fail to achieve human reactivity and coordination. The need for more efficient motion planning algorithms has been present through out my own research on "human-aware" motion planning, which aims to take the surroundings humans explicitly into account. I believe imitation learning is the key to this particular problem as it allows to learn both, new motion skills and predictive models, two capabilities that are at the heart of "human-aware" robots while simultaneously holding the promise of faster and more reactive motion generation. In this talk I will present my work in this direction.

  • Trevor Darrell

Methods for visual recognition have made dramatic strides in recent years on various online benchmarks, but performance in the real world still often falters. Classic gradient-histogram models make overly simplistic assumptions regarding image appearance statistics, both locally and globally. Recent progress suggests that new learning-based representations can improve recognition by devices that are embedded in a physical world.

I'll review new methods for domain adaptation which capture the visual domain shift between environments, and improve recognition of objects in specific places when trained from generic online sources. I'll discuss methods for cross-modal semi-supervised learning, which can leverage additional unlabeled modalities in a test environment.

Finally as time permits I'll present recent results learning hierarchical local image representations based on recursive probabilistic topic models, on learning strong object color models from sets of uncalibrated views using a new multi-view color constancy paradigm, and/or on recent results on monocular estimation of grasp affordances.

  • Stan Sclaroff

In the first part of the talk, I will describe methods that learn a single family of detectors for object classes that exhibit large within-class variation. One common solution is to use a divide-and-conquer strategy, where the space of possible within-class variations is partitioned, and different detectors are trained for different partitions.

However, these discrete partitions tend to be arbitrary in continuous spaces, and the classifiers have limited power when there are too few training samples in each subclass. To address this shortcoming, explicit feature sharing has been proposed, but it also makes training more expensive. We show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly solved in a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. The multiplicative kernel formulation enables feature sharing implicitly; the solution for the optimal sharing is a byproduct of SVM learning.

The resulting detector family is tuned to specific variations in the foreground. The effectiveness of this framework is demonstrated in experiments that involve detection, tracking, and pose estimation of human hands, faces, and vehicles in video.

  • Tim Sullivan

Beginning with a seminal paper of Diaconis (1988), the aim of so-called "probabilistic numerics" is to compute probabilistic solutions to deterministic problems arising in numerical analysis by casting them as statistical inference problems. For example, numerical integration of a deterministic function can be seen as the integration of an unknown/random function, with evaluations of the integrand at the integration nodes proving partial information about the integrand. Advantages offered by this viewpoint include: access to the Bayesian representation of prior and posterior uncertainties; better propagation of uncertainty through hierarchical systems than simple worst-case error bounds; and appropriate accounting for numerical truncation and round-off error in inverse problems, so that the replicability of deterministic simulations is not confused with their accuracy, thereby yielding an inappropriately concentrated Bayesian posterior. This talk will describe recent work on probabilistic numerical solvers for ordinary and partial differential equations, including their theoretical construction, convergence rates, and applications to forward and inverse problems. Joint work with Andrew Stuart (Warwick).

Organizers: Philipp Hennig

Dino Sejdinovic - TBA

IS Colloquium
  • Dino Sejdinovic