Header logo is
Institute Talks

Self-supervised 3D hand pose estimation

Talk
  • 23 July 2019 • 11:00 12:00
  • Chengde Wan
  • PS-Aquarium

Deep learning has significantly advanced state-of-the-art for 3D hand pose estimation, of which accuracy can be improved with increased amounts of labelled data. However, acquiring 3D hand pose labels can be extremely difficult. In this talk, I will present our recent two works on leveraging self-supervised learning techniques for hand pose estimation from depth map. In both works, we incorporate differentiable renderer to the network and formulate training loss as model fitting error to update network parameters. In first part of the talk, I will present our earlier work which approximates hand surface with a set of spheres. We then model the pose prior as a variational lower bound with variational auto-encoder(VAE). In second part, I will present our latest work on regressing the vertex coordinates of a hand mesh model with 2D fully convolutional network(FCN) in a single forward pass. In the first stage, the network estimates a dense correspondence field for every pixel on the image grid to the mesh grid. In the second stage, we design a differentiable operator to map features learned from the previous stage and regress a 3D coordinate map on the mesh grid. Finally, we sample from the mesh grid to recover the mesh vertices, and fit it an articulated template mesh in closed form. Without any human annotation, both works can perform competitively with strongly supervised methods. The later work will also be later extended to be compatible with MANO model.

Organizers: Dimitrios Tzionas

  • Preeya Khanna
  • Heisenbergstr. 3, Room 2P4

Actions constitute the way we interact with the world, making motor disabilities such as Parkinson’s disease and stroke devastating. The neurological correlates of the injured brain are challenging to study and correct given the adaptation, redundancy, and distributed nature of our motor system. However, recent studies have used increasingly sophisticated technology to sample from this distributed system, improving our understanding of neural patterns that support movement in healthy brains, or compromise movement in injured brains. One approach to translating these findings to into therapies to restore healthy brain patterns is with closed-loop brain-machine interfaces (BMIs). While closed-loop BMIs have been discussed primarily as assistive technologies the underlying techniques may also be useful for rehabilitation.

Organizers: Katherine J. Kuchenbecker


Consistency and minimax rates of random forests

Talk
  • 18 April 2018 • 13:30 14:45
  • Erwan Scornet
  • Tübingen, Main seminar room (N0.002)

The recent and ongoing digital world expansion now allows anyone to have access to a tremendous amount of information. However collecting data is not an end in itself and thus techniques must be designed to gain in-depth knowledge from these large data bases.

Organizers: Mara Cascianelli


  • Alexander Mathis
  • Tübingen, Aquarium (N3.022)

Quantifying behavior is crucial for many applications in neuroscience. Videography provides easy methods for the observation and recording of animal behavior in diverse settings, yet extracting particular aspects of a behavior for further analysis can be highly time consuming. In motor control studies, humans or other animals are often marked with reflective markers to assist with computer-based tracking, yet markers are intrusive (especially for smaller animals), and the number and location of the markers must be determined a priori. Here, we present a highly efficient method for markerless tracking based on transfer learning with deep neural networks that achieves excellent results with minimal training data. We demonstrate the versatility of this framework by tracking various body parts in a broad collection of experimental settings: mice odor trail-tracking, egg-laying behavior in drosophila, and mouse hand articulation in a skilled forelimb task. For example, during the skilled reaching behavior, individual joints can be automatically tracked (and a confidence score is reported). Remarkably, even when a small number of frames are labeled (≈200), the algorithm achieves excellent tracking performance on test frames that is comparable to human accuracy.

Organizers: Melanie Feldhofer


Machine Learning for Tactile Manipulation

IS Colloquium
  • 13 April 2018 • 11:00 12:00
  • Jan Peters
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Today’s robots have motor abilities and sensors that exceed those of humans in many ways: They move more accurately and faster; their sensors see more and at a higher precision and in contrast to humans they can accurately measure even the smallest forces and torques. Robot hands with three, four, or five fingers are commercially available, and, so are advanced dexterous arms. Indeed, modern motion-planning methods have rendered grasp trajectory generation a largely solved problem. Still, no robot to date matches the manipulation skills of industrial assembly workers despite that manipulation of mechanical objects remains essential for the industrial assembly of complex products. So, why are current robots still so bad at manipulation and humans so good?

Organizers: Katherine J. Kuchenbecker


BodyNet: Volumetric Inference of 3D Human Body Shapes

Talk
  • 10 April 2018 • 16:00 17:00
  • Gül Varol
  • N3.022

Human shape estimation is an important task for video editing, animation and fashion industry. Predicting 3D human body shape from natural images, however, is highly challenging due to factors such as variation in human bodies, clothing and viewpoint. Prior methods addressing this problem typically attempt to fit parametric body models with certain priors on pose and shape. In this work we argue for an alternative representation and propose BodyNet, a neural network for direct inference of volumetric body shape from a single image. BodyNet is an end-to-end trainable network that benefits from (i) a volumetric 3D loss, (ii) a multi-view re-projection loss, and (iii) intermediate supervision of 2D pose, 2D body part segmentation, and 3D pose. Each of them results in performance improvement as demonstrated by our experiments. To evaluate the method, we fit the SMPL model to our network output and show state-of-the-art results on the SURREAL and Unite the People datasets, outperforming recent approaches. Besides achieving state-of-the-art performance, our method also enables volumetric body-part segmentation.


A New Perspective on Usability Applied to Robotics

Talk
  • 04 April 2018 • 14:00 15:00
  • Dr. Vincent Berenz
  • Stuttgart 2P4

For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior. The front-end of Playful is a scripting language which is simple (only five keywords), yet results in the runtime coordinated activation and deactivation of an arbitrary number of higher-level sensory-motor couplings. When using Playful, developers describe actions of various levels of abstraction via behaviors trees. During runtime an underlying engine applies a mixture of logical constructs to obtain the desired behavior. These constructs include conditional ruling, dynamic prioritization based on resources management and finite state machines. Playful has been successfully used to program an upper-torso humanoid manipulator to perform lively interaction with any human approaching it.

Organizers: Katherine J. Kuchenbecker Mayumi Mohan Alexis Block


  • Omar Costilla Reyes
  • Aquarium @ PS

Human footsteps can provide a unique behavioural pattern for robust biometric systems. Traditionally, security systems have been based on passwords or security access cards. Biometric recognition deals with the design of security systems for automatic identification or verification of a human subject (client) based on physical and behavioural characteristics. In this talk, I will present spatio-temporal raw and processed footstep data representations designed and evaluated on deep machine learning models based on a two-stream resnet architecture, by using the SFootBD database the largest footstep database to date with more than 120 people and almost 20,000 footstep signals. Our models deliver an artificial intelligence capable of effectively differentiating the fine-grained variability of footsteps between legitimate users (clients) and impostor users of the biometric system. We provide experimental results in 3 critical data-driven security scenarios, according to the amount of footstep data available for model training: at airports security checkpoints (smallest training set), workspace environments (medium training set) and home environments (largest training set). In these scenarios we report state-of-the-art footstep recognition rates.

Organizers: Dimitrios Tzionas


  • Silvia Zuffi
  • N3.022

Animals are widespread in nature and the analysis of their shape and motion is of importance in many fields and industries. Modeling 3D animal shape, however, is difficult because the 3D scanning methods used to capture human shape are not applicable to wild animals or natural settings. In our previous SMAL model, we learn animal shape from toys figurines, but toys are limited in number and realism, and not every animal is sufficiently popular for there to be realistic toys depicting it. What is available in large quantities are images and videos of animals from nature photographs, animal documentaries, and webcams. In this talk I will present our recent work for capturing the detailed 3D shape of animals from images alone. Our method extracts significantly more 3D shape detail than previous work and is able to model new species using only a few video frames. Additionally, we extract realistic texture map from images for capturing both animal shape and appearance.


  • Patrick Bajari
  • MPI IS lecture hall (N0.002)

In academic and policy circles, there has been considerable interest in the impact of “big data” on firm performance. We examine the question of how the amount of data impacts the accuracy of Machine Learned models of weekly retail product forecasts using a proprietary data set obtained from Amazon. We examine the accuracy of forecasts in two relevant dimensions: the number of products (N), and the number of time periods for which a product is available for sale (T). Theory suggests diminishing returns to larger N and T, with relative forecast errors diminishing at rate 1/sqrt(N) + 1/sqrt(T) . Empirical results indicate gains in forecast improvement in the T dimension; as more and more data is available for a particular product, demand forecasts for that product improve over time, though with diminishing returns to scale. In contrast, we find an essentially flat N effect across the various lines of merchandise: with a few exceptions, expansion in the number of retail products within a category does not appear associated with increases in forecast performance. We do find that the firm’s overall forecast performance, controlling for N and T effects across product lines, has improved over time, suggesting gradual improvements in forecasting from the introduction of new models and improved technology.

Organizers: Michel Besserve Michael Hirsch


  • Sergio Pascual Díaz
  • S2.014

My plan is to present the motivation behind Deep GPs as well as some of the current approximate inference schemes available with their limitations. Then, I will explain how Deep GPs fit into the BayesOpt framework and the specific problems they could potentially solve.

Organizers: Philipp Hennig