Header logo is
Institute Talks

Vignettes of physical ecology of insects and insect based bio-inspiration

  • 04 April 2019 • 11:00 12:00
  • Jérôme Casas
  • 2P04

Insect chemical ecology is a mature, long standing field, with its own journal. By contrast, insect physical ecology is much less studied and the worked scattered. Using work done in my group, I will highlight locomotion, both in granular materials like sand and at the water surface as well as sensing, in particular olfaction and flow sensing. The bio-inspired implementations in MEMS technologies will be the closing chapter.

Organizers: Metin Sitti

  • Patrick Bajari
  • MPI IS lecture hall (N0.002)

In academic and policy circles, there has been considerable interest in the impact of “big data” on firm performance. We examine the question of how the amount of data impacts the accuracy of Machine Learned models of weekly retail product forecasts using a proprietary data set obtained from Amazon. We examine the accuracy of forecasts in two relevant dimensions: the number of products (N), and the number of time periods for which a product is available for sale (T). Theory suggests diminishing returns to larger N and T, with relative forecast errors diminishing at rate 1/sqrt(N) + 1/sqrt(T) . Empirical results indicate gains in forecast improvement in the T dimension; as more and more data is available for a particular product, demand forecasts for that product improve over time, though with diminishing returns to scale. In contrast, we find an essentially flat N effect across the various lines of merchandise: with a few exceptions, expansion in the number of retail products within a category does not appear associated with increases in forecast performance. We do find that the firm’s overall forecast performance, controlling for N and T effects across product lines, has improved over time, suggesting gradual improvements in forecasting from the introduction of new models and improved technology.

Organizers: Michel Besserve Michael Hirsch

  • Sergio Pascual Díaz
  • S2.014

My plan is to present the motivation behind Deep GPs as well as some of the current approximate inference schemes available with their limitations. Then, I will explain how Deep GPs fit into the BayesOpt framework and the specific problems they could potentially solve.

Organizers: Philipp Hennig

Political Science and Data Science: What we can learn from each other

IS Colloquium
  • 12 March 2018 • 11:15 12:15
  • Simon Hegelich
  • MPI-IS lecture hall (N0.002)

Political science is integrating computational methods like machine learning into its own toolbox. At the same time the awareness rises that the utilization of machine learning algorithms in our daily life is a highly political issue. These two trends - the integration of computational methods into political science and the political analysis of the digital revolution - form the ground for a new transdisciplinary approach: political data science. Interestingly, there is a rich tradition of crossing the borders of the disciplines, as can be seen in the works of Paul Werbos and Herbert Simon (both political scientists). Building on this tradition and integrating ideas from deep learning and Hegel's philosophy of logic a new perspective on causality might arise.

Organizers: Philipp Geiger

  • Giacomo Garegnani
  • Tübingen, S2 seminar room

We present a novel probabilistic integrator for ordinary differential equations (ODEs) which allows for uncertainty quantification of the numerical error [1]. In particular, we randomise the time steps and build a probability measure on the deterministic solution, which collapses to the true solution of the ODE with the same rate of convergence as the underlying deterministic scheme. The intrinsic nature of the random perturbation guarantees that our probabilistic integrator conserves some geometric properties of the deterministic method it is built on, such as the conservation of first integrals or the symplecticity of the flow. Finally, we present a procedure to incorporate our probabilistic solver into the frame of Bayesian inference inverse problems, showing how inaccurate posterior concentrations given by deterministic methods can be corrected by a probabilistic interpretation of the numerical solution.

Organizers: Hans Kersting

  • Bin Yu
  • Tübingen, IS Lecture Hall (N0.002)

In this talk, I'd like to discuss the intertwining importance and connections of three principles of data science in the title. They will be demonstrated in the context of two collaborative projects in neuroscience and genomics, respectively. The first project in neuroscience uses transfer learning to integrate fitted convolutional neural networks (CNNs) on ImageNet with regression methods to provide predictive and stable characterizations of neurons from the challenging primary visual cortex V4. The second project proposes iterative random forests (iRF) as a stablized RF to seek predictable and interpretable high-order interactions among biomolecules.

Organizers: Michel Besserve

  • Prof. Constantin Rothkopf
  • Tübingen, 3rd Floor Intelligent Systems: Aquarium

Active vision has long put forward the idea, that visual sensation and our actions are inseparable, especially when considering naturalistic extended behavior. Further support for this idea comes from theoretical work in optimal control, which demonstrates that sensing, planning, and acting in sequential tasks can only be separated under very restricted circumstances. The talk will present experimental evidence together with computational explanations of human visuomotor behavior in tasks ranging from classic psychophysical detection tasks to ball catching and visuomotor navigation. Along the way it will touch topics such as the heuristics hypothesis and learning of visual representations. The connecting theme will be that, from the switching of visuomotor behavior in response to changing task-constraints down to cortical visual representations in V1, action and perception are inseparably intertwined in an ambiguous and uncertain world

Organizers: Betty Mohler

A naturalistic perspective on optic flow processing in the fly

  • 27 February 2018 • 3:00 p.m. 4:00 p.m.
  • Aljoscha Leonhardt
  • N4.022, EI Glass Seminar Room

Optic flow offers a rich source of information about an organism’s environment. Flies, for instance, are thought to make use of motion vision to control and stabilise their course during acrobatic airborne manoeuvres. How these computations are implemented in neural hardware and how such circuits cope with the visual complexity of natural scenes, however, remain open questions. This talk outlines some of the progress we have made in unraveling the computational substrate underlying optic flow processing in Drosophila. In particular, I will focus on our efforts to connect neural mechanisms and real-world demands via task-driven modelling.

Organizers: Michel Besserve

Patient Inspired Engineering: Problem, device, solution

  • 26 February 2018 • 11:00 12:00
  • Professor Rahmi Oklu
  • Room 3P02 - Stuttgart

Minimally invasive approaches to the treatment of vascular diseases are constantly evolving. These diseases are among the most prevalent medical problems today including stroke, myocardial infarction, pulmonary emboli, hemorrhage and aneurysms. I will review current approaches to vascular embolization and thrombosis, the challenges they pose and the limitations of current devices and end with patient inspired engineering approaches to the treatment of these conditions.

Organizers: Metin Sitti

Deriving a Tongue Model from MRI Data

  • 20 February 2018 • 14:00 14:45
  • Alexander Hewer
  • Aquarium

The tongue plays a vital part in everyday life where we use it extensively during speech production. Due to this importance, we want to derive a parametric shape model of the tongue. This model enables us to reconstruct the full tongue shape from a sparse set of points, like for example motion capture data. Moreover, we can use such a model in simulations of the vocal tract to perform articulatory speech synthesis or to create animated virtual avatars. In my talk, I describe a framework for deriving such a model from MRI scans of the vocal tract. In particular, this framework uses image denoising and segmentation methods to produce a point cloud approximating the vocal tract surface. In this context, I will also discuss how palatal contacts of the tongue can be handled, i.e., situations where the tongue touches the palate and thus no tongue boundary is visible. Afterwards, template matching is used to derive a mesh representation of the tongue from this cloud. The acquired meshes are finally used to construct a multilinear model.

Organizers: Timo Bolkart

Nonstandard Analysis - The Comeback of Infinitesimals

  • 19 February 2018 • 11:00 12:15
  • Randolf Scholz
  • Tübingen,

The early Calculus of Newton and Leibniz made heavy use of infinitesimal quantities and flourished for over a hundred years until it was superseded by the more rigorous epsilon-delta formalism. It took until the 1950's for A. Robinson to find a proper way to construct a number system containing actual infinitesimals -- the Hyperreals *|R. This talk outlines their construction and possible applications in modern analysis.

Organizers: Philipp Hennig