Header logo is


2019


Thumb xl journal iav
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

Project Page [BibTex]

2019


Project Page [BibTex]


Thumb xl model
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders

Ghosh, P., Losalka, A., Black, M. J.

In Proc. AAAI, 2019 (inproceedings)

Abstract
Susceptibility of deep neural networks to adversarial attacks poses a major theoretical and practical challenge. All efforts to harden classifiers against such attacks have seen limited success till now. Two distinct categories of samples against which deep neural networks are vulnerable, ``adversarial samples" and ``fooling samples", have been tackled separately so far due to the difficulty posed when considered together. In this work, we show how one can defend against them both under a unified framework. Our model has the form of a variational autoencoder with a Gaussian mixture prior on the latent variable, such that each mixture component corresponds to a single class. We show how selective classification can be performed using this model, thereby causing the adversarial objective to entail a conflict. The proposed method leads to the rejection of adversarial samples instead of misclassification, while maintaining high precision and recall on test data. It also inherently provides a way of learning a selective classifier in a semi-supervised scenario, which can similarly resist adversarial attacks. We further show how one can reclassify the detected adversarial samples by iterative optimization.

ps

link (url) [BibTex]