Header logo is


2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

ei

[BibTex]

2012


[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

ei

[BibTex]

[BibTex]


no image
Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2161-2174, December 2012 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

December 2012, US Patent App. 14/368,079 (misc)

pi

[BibTex]


no image
Dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

December 2012, US Patent App. 13/533,386 (misc)

pi

[BibTex]

[BibTex]


Thumb xl pengthesisteaser
Virtual Human Bodies with Clothing and Hair: From Images to Animation

Guan, P.

Brown University, Department of Computer Science, December 2012 (phdthesis)

ps

pdf [BibTex]

pdf [BibTex]


no image
Hippocampal-Cortical Interaction during Periods of Subcortical Silence

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Nature, 491, pages: 547-553, November 2012 (article)

Abstract
Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

ei

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Thermodynamic limits of dynamic cooling

Allahverdyan, A., Hovhannisyan, K., Janzing, D., Mahler, G.

Physical Review E, 84(4):16, October 2012 (article)

Abstract
We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature Tmin>0 reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach Tmin grows as 1/Tmin. This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above Tmin. Our results on Tmin>0 prove unattainability of the absolute zero temperature without ambiguities that surround its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N≫1 identical spins. Here we show that Tmin∝1/N and find the maximal cooling compatible with the minimal work determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered when taking into account imperfections in preparing the microcanonic state.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 13.56.29
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

am

DOI [BibTex]

DOI [BibTex]


Thumb xl sankaran iros 20121
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl coregtr
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl paperfig
Lie Bodies: A Manifold Representation of 3D Human Shape

Freifeld, O., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 1-14, Part I, LNCS 7572, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid human shape, nor does the Euclidean difference of these two deformations provide a meaningful measure of shape dissimilarity. Consequently, we define a novel manifold for shape representation, with emphasis on body shapes, using a new Lie group of deformations. This has several advantages. First we define triangle deformations exactly, removing non-physical deformations and redundant degrees of freedom common to previous methods. Second, the Riemannian structure of Lie Bodies enables a more meaningful definition of body shape similarity by measuring distance between bodies on the manifold of body shape deformations. Third, the group structure allows the valid composition of deformations. This is important for models that factor body shape deformations into multiple causes or represent shape as a linear combination of basis shapes. Finally, body shape variation is modeled using statistics on manifolds. Instead of modeling Euclidean shape variation with Principal Component Analysis we capture shape variation on the manifold using Principal Geodesic Analysis. Our experiments show consistent visual and quantitative advantages of Lie Bodies over traditional Euclidean models of shape deformation and our representation can be easily incorporated into existing methods.

ps

pdf supplemental material youtube poster eigenshape video code Project Page Project Page [BibTex]

pdf supplemental material youtube poster eigenshape video code Project Page Project Page [BibTex]


Thumb xl coregteaser
Coregistration: Simultaneous alignment and modeling of articulated 3D shape

Hirshberg, D., Loper, M., Rachlin, E., Black, M.

In European Conf. on Computer Vision (ECCV), pages: 242-255, LNCS 7577, Part IV, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional (3D) shape models are powerful because they enable the inference of object shape from incomplete, noisy, or ambiguous 2D or 3D data. For example, realistic parameterized 3D human body models have been used to infer the shape and pose of people from images. To train such models, a corpus of 3D body scans is typically brought into registration by aligning a common 3D human-shaped template to each scan. This is an ill-posed problem that typically involves solving an optimization problem with regularization terms that penalize implausible deformations of the template. When aligning a corpus, however, we can do better than generic regularization. If we have a model of how the template can deform then alignments can be regularized by this model. Constructing a model of deformations, however, requires having a corpus that is already registered. We address this chicken-and-egg problem by approaching modeling and registration together. By minimizing a single objective function, we reliably obtain high quality registration of noisy, incomplete, laser scans, while simultaneously learning a highly realistic articulated body model. The model greatly improves robustness to noise and missing data. Since the model explains a corpus of body scans, it captures how body shape varies across people and poses.

ps

pdf publisher site poster supplemental material (400MB) [BibTex]

pdf publisher site poster supplemental material (400MB) [BibTex]


Thumb xl lietr
Lie Bodies: A Manifold Representation of 3D Human Shape. Supplemental Material

Freifeld, O., Black, M. J.

(No. 5), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl posear
Coupled Action Recognition and Pose Estimation from Multiple Views

Yao, A., Gall, J., van Gool, L.

International Journal of Computer Vision, 100(1):16-37, October 2012 (article)

ps

publisher's site code pdf Project Page [BibTex]

publisher's site code pdf Project Page [BibTex]


Thumb xl sinteltr
MPI-Sintel Optical Flow Benchmark: Supplemental Material

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

(No. 6), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl sintelworkshop
Lessons and insights from creating a synthetic optical flow benchmark

Wulff, J., Butler, D. J., Stanley, G. B., Black, M. J.

In ECCV Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, pages: 168-177, Part II, LNCS 7584, (Editors: A. Fusiello et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

ps

pdf dataset poster youtube Project Page Project Page [BibTex]

pdf dataset poster youtube Project Page Project Page [BibTex]


Thumb xl tripod seq 16 054 part 3d vis
3D2PM – 3D Deformable Part Models

Pepik, B., Gehler, P., Stark, M., Schiele, B.

In Proceedings of the European Conference on Computer Vision (ECCV), pages: 356-370, Lecture Notes in Computer Science, (Editors: Fitzgibbon, Andrew W. and Lazebnik, Svetlana and Perona, Pietro and Sato, Yoichi and Schmid, Cordelia), Springer, Firenze, October 2012 (inproceedings)

ps

pdf video poster Project Page [BibTex]

pdf video poster Project Page [BibTex]


Thumb xl sinteleccv2012crop
A naturalistic open source movie for optical flow evaluation

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 611-625, Part IV, LNCS 7577, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available.

ps

pdf dataset youtube talk supplemental material Project Page Project Page Project Page [BibTex]

pdf dataset youtube talk supplemental material Project Page Project Page Project Page [BibTex]


Thumb xl coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

European patent application EP12187467.1 and US Provisional Application, October 2012 (patent)

ps

Project Page [BibTex]

Project Page [BibTex]


no image
GLIDE: GPU-Based Linear Regression for Detection of Epistasis

Kam-Thong, T., Azencott, C., Cayton, L., Pütz, B., Altmann, A., Karbalai, N., Sämann, P., Schölkopf, B., Müller-Myhsok, B., Borgwardt, K.

Human Heredity, 73(4):220-236, September 2012 (article)

Abstract
Due to recent advances in genotyping technologies, mapping phenotypes to single loci in the genome has become a standard technique in statistical genetics. However, one-locus mapping fails to explain much of the phenotypic variance in complex traits. Here, we present GLIDE, which maps phenotypes to pairs of genetic loci and systematically searches for the epistatic interactions expected to reveal part of this missing heritability. GLIDE makes use of the computational power of consumer-grade graphics cards to detect such interactions via linear regression. This enabled us to conduct a systematic two-locus mapping study on seven disease data sets from the Wellcome Trust Case Control Consortium and on in-house hippocampal volume data in 6 h per data set, while current single CPU-based approaches require more than a year’s time to complete the same task.

ei

Web [BibTex]

Web [BibTex]


no image
Fast projection onto mixed-norm balls with applications

Sra, S.

Minining and Knowledge Discovery (DMKD), 25(2):358-377, September 2012 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bayesian estimation of free energies from equilibrium simulations

Habeck, M.

Physical Review Letters, 109(10):5, September 2012 (article)

Abstract
Free energy calculations are an important tool in statistical physics and biomolecular simulation. This Letter outlines a Bayesian method to estimate free energies from equilibrium Monte Carlo simulations. A Gibbs sampler is developed that allows efficient sampling of free energies and the density of states. The Gibbs sampling output can be used to estimate expected free energy differences and their uncertainties. The probabilistic formulation offers a unifying framework for existing methods such as the weighted histogram analysis method and the multistate Bennett acceptance ratio; both are shown to be approximate versions of the full probabilistic treatment.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl bottlehandovergrasp
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

am

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


Thumb xl embs2012
A framework for relating neural activity to freely moving behavior

Foster, J. D., Nuyujukian, P., Freifeld, O., Ryu, S., Black, M. J., Shenoy, K. V.

In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’12), pages: 2736 -2739 , IEEE, San Diego, August 2012 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl screen shot 2012 06 25 at 1.59.41 pm
Pottics – The Potts Topic Model for Semantic Image Segmentation

Dann, C., Gehler, P., Roth, S., Nowozin, S.

In Proceedings of 34th DAGM Symposium, pages: 397-407, Lecture Notes in Computer Science, (Editors: Pinz, Axel and Pock, Thomas and Bischof, Horst and Leberl, Franz), Springer, August 2012 (inproceedings)

ps

code pdf poster Project Page [BibTex]

code pdf poster Project Page [BibTex]


no image
Influence Maximization in Continuous Time Diffusion Networks

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning, pages: 313-320, (Editors: J, Langford and J, Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

ei

Web Project Page [BibTex]

Web Project Page [BibTex]


no image
Submodular Inference of Diffusion Networks from Multiple Trees

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning , pages: 489-496, (Editors: J Langford, and J Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

ei

Web Project Page [BibTex]

Web Project Page [BibTex]


Thumb xl thumb hennigk2012
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


Thumb xl representativecrop
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

ps

YouTube pdf talk Project Page [BibTex]

YouTube pdf talk Project Page [BibTex]


Thumb xl deqingthesisteaser
From Pixels to Layers: Joint Motion Estimation and Segmentation

Sun, D.

Brown University, Department of Computer Science, July 2012 (phdthesis)

ps

pdf [BibTex]

pdf [BibTex]


no image
Image denoising: Can plain Neural Networks compete with BM3D?

Burger, H., Schuler, C., Harmeling, S.

In pages: 2392 - 2399, 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2012 (inproceedings)

Abstract
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches. While this has been done before, we will show that by training on large image databases we are able to compete with the current state-of-the-art image denoising methods. Furthermore, our approach is easily adapted to less extensively studied types of noise (by merely exchanging the training data), for which we achieve excellent results as well.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
PAC-Bayesian Inequalities for Martingales

Seldin, Y., Laviolette, F., Cesa-Bianchi, N., Shawe-Taylor, J., Auer, P.

IEEE Transactions on Information Theory, 58(12):7086-7093, June 2012 (article)

Abstract
We present a set of high-probability inequalities that control the concentration of weighted averages of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We also present a comparison inequality that bounds expectation of a convex function of martingale difference type variables by expectation of the same function of independent Bernoulli variables. This inequality is applied to derive a tighter analog of Hoeffding-Azuma inequality.

ei

PDF Web DOI Project Page [BibTex]

PDF Web DOI Project Page [BibTex]


no image
Climate classifications: the value of unsupervised clustering

Zscheischler, J., Mahecha, M., Harmeling, S.

In Proceedings of the International Conference on Computational Science , 9, pages: 897-906, Procedia Computer Science, (Editors: H. Ali, Y. Shi, D. Khazanchi, M. Lees, G.D. van Albada, J. Dongarra, P.M.A. Sloot, J. Dongarra), Elsevier, Amsterdam, Netherlands, ICCS, June 2012 (inproceedings)

Abstract
Classifying the land surface according to di erent climate zones is often a prerequisite for global diagnostic or predictive modelling studies. Classical classifications such as the prominent K¨oppen–Geiger (KG) approach rely on heuristic decision rules. Although these heuristics may transport some process understanding, such a discretization may appear “arbitrary” from a data oriented perspective. In this contribution we compare the precision of a KG classification to an unsupervised classification (k-means clustering). Generally speaking, we revisit the problem of “climate classification” by investigating the inherent patterns in multiple data streams in a purely data driven way. One question is whether we can reproduce the KG boundaries by exploring di erent combinations of climate and remotely sensed vegetation variables. In this context we also investigate whether climate and vegetation variables build similar clusters. In terms of statistical performances, k-means clearly outperforms classical climate classifications. However, a subsequent stability analysis only reveals a meaningful number of clusters if both climate and vegetation data are considered in the analysis. This is a setback for the hope to explain vegetation by means of climate alone. Clearly, classification schemes like K¨oppen-Geiger will play an important role in the future. However, future developments in this area need to be assessed based on data driven approaches.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2017 09 21 at 00.54.33
Entropy Search for Information-Efficient Global Optimization

Hennig, P., Schuler, C.

Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)

Abstract
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.

ei pn

PDF Web Project Page [BibTex]

PDF Web Project Page [BibTex]


Thumb xl frompstods2
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

ps

pdf sup mat code poster Project Page Project Page [BibTex]

pdf sup mat code poster Project Page Project Page [BibTex]


Thumb xl screen shot 2012 03 22 at 17.51.07
Teaching 3D Geometry to Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3362 -3369, IEEE, Providence, RI, USA, June 2012, oral presentation (inproceedings)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
Methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

June 2012, US Patent 8,206,631 (misc)

pi

[BibTex]

[BibTex]


Thumb xl jneuroscicrop
Visual Orientation and Directional Selectivity Through Thalamic Synchrony

Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

Journal of Neuroscience, 32(26):9073-9088, June 2012 (article)

Abstract
Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10–20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene.

ps

preprint publisher's site Project Page [BibTex]

preprint publisher's site Project Page [BibTex]


no image
A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

Nere, A., Olcese, U., Balduzzi, D., Tononi, G.

PLoS ONE, 7(5):17, May 2012 (article)

Abstract
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.

ei

PDF Web DOI [BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Online Kernel-based Learning for Task-Space Tracking Robot Control

Nguyen-Tuong, D., Peters, J.

IEEE Transactions on Neural Networks and Learning Systems, 23(9):1417-1425, May 2012 (article)

Abstract
Abstract—Task-space control of redundant robot systems based on analytical models is known to be susceptive to modeling errors. Here, data driven model learning methods may present an interesting alternative approach. However, learning models for task-space tracking control from sampled data is an illposed problem. In particular, the same input data point can yield many different output values, which can form a non-convex solution space. Because the problem is ill-posed, models cannot be learned from such data using common regression methods. While learning of task-space control mappings is globally illposed, it has been shown in recent work that it is locally a well-defined problem. In this paper, we use this insight to formulate a local, kernel-based learning approach for online model learning for task-space tracking control. We propose a parametrization for the local model which makes an application in task-space tracking control of redundant robots possible. The model parametrization further allows us to apply the kerneltrick and, therefore, enables a formulation within the kernel learning framework. For evaluations, we show the ability of the method for online model learning for task-space tracking control of redundant robots.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

20th Annual Scientific Meeting ISMRM, May 2012 (poster)

Abstract
Patient motion in the scanner is one of the most challenging problems in MRI. We propose a new retrospective motion correction method for which no tracking devices or specialized sequences are required. We seek the motion parameters such that the image gradients in the spatial domain become sparse. We then use these parameters to invert the motion and recover the sharp image. In our experiments we acquired 2D TSE images and 3D FLASH/MPRAGE volumes of the human head. Major quality improvements are possible in the 2D case and substantial improvements in the 3D case.

ei

Web [BibTex]

Web [BibTex]


no image
glm-ie: The Generalised Linear Models Inference and Estimation Toolbox

Nickisch, H.

Journal of Machine Learning Research, 13, pages: 1699-1703, May 2012 (article)

Abstract
The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible. Most of the code is written in Matlab including some The code is fully compatible to both Matlab 7.x and GNU Octave 3.3.x. Abstract Probabilistic classification, sparse linear modelling and logistic regression are covered in a common algorithmical framework.

ei

PDF PDF Project Page [BibTex]

PDF PDF Project Page [BibTex]


no image
Information-geometric approach to inferring causal directions

Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniušis, P., Steudel, B., Schölkopf, B.

Artificial Intelligence, 182-183, pages: 1-31, May 2012 (article)

Abstract
While conventional approaches to causal inference are mainly based on conditional (in)dependences, recent methods also account for the shape of (conditional) distributions. The idea is that the causal hypothesis “X causes Y” imposes that the marginal distribution PX and the conditional distribution PY|X represent independent mechanisms of nature. Recently it has been postulated that the shortest description of the joint distribution PX,Y should therefore be given by separate descriptions of PX and PY|X. Since description length in the sense of Kolmogorov complexity is uncomputable, practical implementations rely on other notions of independence. Here we define independence via orthogonality in information space. This way, we can explicitly describe the kind of dependence that occurs between PY and PX|Y making the causal hypothesis “Y causes X” implausible. Remarkably, this asymmetry between cause and effect becomes particularly simple if X and Y are deterministically related. We present an inference method that works in this case. We also discuss some theoretical results for the non-deterministic case although it is not clear how to employ them for a more general inference method.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A new PET insert for simultaneous PET/MR small animal imaging

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Sparse regularized regression identifies behaviorally-relevant stimulus features from psychophysical data

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 131(5):3953-3969, May 2012 (article)

Abstract
As a prerequisite to quantitative psychophysical models of sensory processing it is necessary to learn to what extent decisions in behavioral tasks depend on specific stimulus features, the perceptual cues. Based on relative linear combination weights, this study demonstrates how stimulus-response data can be analyzed in this regard relying on an L1-regularized multiple logistic regression, a modern statistical procedure developed in machine learning. This method prevents complex models from over-fitting to noisy data. In addition, it enforces “sparse” solutions, a computational approximation to the postulate that a good model should contain the minimal set of predictors necessary to explain the data. In simulations, behavioral data from a classical auditory tone-in-noise detection task were generated. The proposed method is shown to precisely identify observer cues from a large set of covarying, interdependent stimulus features—a setting where standard correlational and regression methods fail. The proposed method succeeds for a wide range of signal-to-noise ratios and for deterministic as well as probabilistic observers. Furthermore, the detailed decision rules of the simulated observers were reconstructed from the estimated linear model weights allowing predictions of responses on the basis of individual stimuli.

ei

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Learning Tracking Control with Forward Models

Bócsi, B., Hennig, P., Csató, L., Peters, J.

In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)

Abstract
Performing task-space tracking control on redundant robot manipulators is a difficult problem. When the physical model of the robot is too complex or not available, standard methods fail and machine learning algorithms can have advantages. We propose an adaptive learning algorithm for tracking control of underactuated or non-rigid robots where the physical model of the robot is unavailable. The control method is based on the fact that forward models are relatively straightforward to learn and local inversions can be obtained via local optimization. We use sparse online Gaussian process inference to obtain a flexible probabilistic forward model and second order optimization to find the inverse mapping. Physical experiments indicate that this approach can outperform state-of-the-art tracking control algorithms in this context.

ei pn

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]