Header logo is


2017


Human Shape Estimation using Statistical Body Models
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF [BibTex]

PDF [BibTex]


no image
Stationary and time-dependent heat transfer in paradigmatic many-body geometries

Asheichyk, Kiryl

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


no image
Non-equilibrium forces after temperature quenches in ideal fluids with conserved density

Hölzl, Christian

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Numerical studies of active colloids at fluid interfaces

Peter, Toni

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


Learning Inference Models for Computer Vision
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

ps

pdf [BibTex]

pdf [BibTex]


Mobile Microrobotics
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Collective dynamics of laterally confined active particles near fluid-fluid interfaces

Kistner, Irina

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


Design of a visualization scheme for functional connectivity data of Human Brain
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Self-diffusion of DNA grafted functional colloids in a crowded environment

Werner, M.

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Electrostatic interaction between non-identical charged particles at an electrolyte interface

Schmetzer, Timo

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Microscopic investigation of the Marangoni effect

Pöhnl, Matthias

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Interfacial structure of a catalytic surface

Lipp, Melanie

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2006


no image
Semi-Supervised Learning

Chapelle, O., Schölkopf, B., Zien, A.

pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

Abstract
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

ei

Web [BibTex]

2006


Web [BibTex]


no image
Kernel PCA for Image Compression

Huhle, B.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning

Kuss, M.

Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Gaussian Processes for Machine Learning

Rasmussen, CE., Williams, CKI.

pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)

Abstract
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

ei

Web [BibTex]

Web [BibTex]


no image
Interfaces in fluids of charged platelike colloids

Bier, M.

Universität Stuttgart, Stuttgart, 2006 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Fluids in pores and gating in ion channels

Kroll, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Critical phenomena at chemically structured substrates

Sprenger, M.

Universität Stuttgart, Stuttgart, 2006 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Density distributions in suspensions flowing around colloidal particles

Krüger, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Elektronentheorie der magnetischen EXAFS

Gü\ssmann, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Elektronenspektroskopie an Übergangsmetallclustern

He\ssler, M.

Bayerische Julius-Maximilians-Universität, Würzburg, 2006 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen storage by physisorption on porous materials

Panella, B.

Universität Stuttgart, Stuttgart, 2006 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Theory of magnetic x-ray reflectometry on the Co2Pt7 multilayer system

Martosiswoyo, L.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetischer zirkularer Röntgendichroismus an Übergangsmetalloxiden

Lafkioti, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Contributions to the theory of x-ray magnetic dichroism

Dörfler, F.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]

2005


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

ei

PDF PDF [BibTex]

2005


PDF PDF [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

ei

Web [BibTex]

Web [BibTex]