Header logo is


2022


Reconstructing Expressive {3D} Humans from {RGB} Images
Reconstructing Expressive 3D Humans from RGB Images

Choutas, V.

ETH Zurich, Max Planck Institute for Intelligent Systems and ETH Zurich, December 2022 (thesis)

Abstract
To interact with our environment, we need to adapt our body posture and grasp objects with our hands. During a conversation our facial expressions and hand gestures convey important non-verbal cues about our emotional state and intentions towards our fellow speakers. Thus, modeling and capturing 3D full-body shape and pose, hand articulation and facial expressions are necessary to create realistic human avatars for augmented and virtual reality. This is a complex task, due to the large number of degrees of freedom for articulation, body shape variance, occlusions from objects and self-occlusions from body parts, e.g. crossing our hands, and subject appearance. The community has thus far relied on expensive and cumbersome equipment, such as multi-view cameras or motion capture markers, to capture the 3D human body. While this approach is effective, it is limited to a small number of subjects and indoor scenarios. Using monocular RGB cameras would greatly simplify the avatar creation process, thanks to their lower cost and ease of use. These advantages come at a price though, since RGB capture methods need to deal with occlusions, perspective ambiguity and large variations in subject appearance, in addition to all the challenges posed by full-body capture. In an attempt to simplify the problem, researchers generally adopt a divide-and-conquer strategy, estimating the body, face and hands with distinct methods using part-specific datasets and benchmarks. However, the hands and face constrain the body and vice-versa, e.g. the position of the wrist depends on the elbow, shoulder, etc.; the divide-and-conquer approach can not utilize this constraint. In this thesis, we aim to reconstruct the full 3D human body, using only readily accessible monocular RGB images. In a first step, we introduce a parametric 3D body model, called SMPL-X, that can represent full-body shape and pose, hand articulation and facial expression. Next, we present an iterative optimization method, named SMPLify-X, that fits SMPL-X to 2D image keypoints. While SMPLify-X can produce plausible results if the 2D observations are sufficiently reliable, it is slow and susceptible to initialization. To overcome these limitations, we introduce ExPose, a neural network regressor, that predicts SMPL-X parameters from an image using body-driven attention, i.e. by zooming in on the hands and face, after predicting the body. From the zoomed-in part images, dedicated part networks predict the hand and face parameters. ExPose combines the independent body, hand, and face estimates by trusting them equally. This approach though does not fully exploit the correlation between parts and fails in the presence of challenges such as occlusion or motion blur. Thus, we need a better mechanism to aggregate information from the full body and part images. PIXIE uses neural networks called moderators that learn to fuse information from these two image sets before predicting the final part parameters. Overall, the addition of the hands and face leads to noticeably more natural and expressive reconstructions. Creating high fidelity avatars from RGB images requires accurate estimation of 3D body shape. Although existing methods are effective at predicting body pose, they struggle with body shape. We identify the lack of proper training data as the cause. To overcome this obstacle, we propose to collect internet images from fashion models websites, together with anthropometric measurements. At the same time, we ask human annotators to rate images and meshes according to a pre-defined set of linguistic attributes. We then define mappings between measurements, linguistic shape attributes and 3D body shape. Equipped with these mappings, we train a neural network regressor, SHAPY, that predicts accurate 3D body shapes from a single RGB image. We observe that existing 3D shape benchmarks lack subject variety and/or ground-truth shape. Thus, we introduce a new benchmark, Human Bodies in the Wild (HBW), which contains images of humans and their corresponding 3D ground-truth body shape. SHAPY shows how we can overcome the lack of in-the-wild images with 3D shape annotations through easy-to-obtain anthropometric measurements and linguistic shape attributes. Regressors that estimate 3D model parameters are robust and accurate, but often fail to tightly fit the observations. Optimization-based approaches tightly fit the data, by minimizing an energy function composed of a data term that penalizes deviations from the observations and priors that encode our knowledge of the problem. Finding the balance between these terms and implementing a performant version of the solver is a time-consuming and non-trivial task. Machine-learned continuous optimizers combine the benefits of both regression and optimization approaches. They learn the priors directly from data, avoiding the need for hand-crafted heuristics and loss term balancing, and benefit from optimized neural network frameworks for fast inference. Inspired from the classic Levenberg-Marquardt algorithm, we propose a neural optimizer that outperforms classic optimization, regression and hybrid optimization-regression approaches. Our proposed update rule uses a weighted combination of gradient descent and a network-predicted update. To show the versatility of the proposed method, we apply it on three other problems, namely full body estimation from (i) 2D keypoints, (ii) head and hand location from a head-mounted device and (iii) face tracking from dense 2D landmarks. Our method can easily be applied to new model fitting problems and offers a competitive alternative to well-tuned traditional model fitting pipelines, both in terms of accuracy and speed. To summarize, we propose a new and richer representation of the human body, SMPL-X, that is able to jointly model the 3D human body pose and shape, facial expressions and hand articulation. We propose methods, SMPLify-X, ExPose and PIXIE that estimate SMPL-X parameters from monocular RGB images, progressively improving the accuracy and realism of the predictions. To further improve reconstruction fidelity, we demonstrate how we can use easy-to-collect internet data and human annotations to overcome the lack of 3D shape data and train a model, SHAPY, that predicts accurate 3D body shape from a single RGB image. Finally, we propose a flexible learnable update rule for parametric human model fitting that outperforms both classic optimization and neural network approaches. This approach is easily applicable to a variety of problems, unlocking new applications in AR/VR scenarios.

ps

pdf [BibTex]

2022


pdf [BibTex]

2020


no image
Voltage dependent interfacial magnetism in multilayer systems

Nacke, R.

Universität Stuttgart, Stuttgart, December 2020 (thesis)

mms

[BibTex]

2020


[BibTex]

2019


Scientific Report 2016 - 2018
Scientific Report 2016 - 2018
2019 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January 2016 to December 2018. It is our third report since the founding of the institute in 2011. This status report is organized as follows: we begin with an overview of the institute, including its organizational structure (Chapter 1). The central part of the scientific report consists of chapters on the research conducted by the institute’s departments (Chapters 2 to 5) and its independent research groups (Chapters 6 to 18), as well as the work of the institute’s central scientific facilities (Chapter 19). For entities founded after January 2016, the respective report sections cover work done from the date of the establishment of the department, group, or facility.

ei hi ps pi

Scientific Report 2016 - 2018 [BibTex]

2018


no image
Nanorobots propel through the eye

Wu, Z., Troll, J., Jeong, H., Qiang, W., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Max Planck Society, 2018 (mpi_year_book)

Abstract
Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

pf

link (url) [BibTex]

2018


link (url) [BibTex]

2015


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

2015


link (url) Project Page [BibTex]

2014


no image
Development of advanced methods for improving astronomical images

Schmeißer, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

ei

[BibTex]

2014


[BibTex]

2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]

2010


no image
Inferring High-Dimensional Causal Relations using Free Probability Theory

Zscheischler, J.

Humboldt Universität Berlin, Germany, August 2010 (diplomathesis)

ei

PDF [BibTex]

2010


PDF [BibTex]


no image
Semi-supervised Subspace Learning and Application to Human Functional Magnetic Brain Resonance Imaging Data

Shelton, J.

Biologische Kybernetik, Eberhard Karls Universität, Tübingen, Germany, July 2010 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Quantitative Evaluation of MR-based Attenuation Correction for Positron Emission Tomography (PET)

Mantlik, F.

Biologische Kybernetik, Universität Mannheim, Germany, March 2010 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Finding Gene-Gene Interactions using Support Vector Machines

Rakitsch, B.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Detecting the mincut in sparse random graphs

Köhler, R.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

ei

[BibTex]

[BibTex]

2009


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

ei

[BibTex]

2009


[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]

2008


no image
Reinforcement Learning for Motor Primitives

Kober, J.

Biologische Kybernetik, University of Stuttgart, Stuttgart, Germany, August 2008 (diplomathesis)

ei

PDF [BibTex]

2008


PDF [BibTex]


no image
Asymmetries of Time Series under Inverting their Direction

Peters, J.

Biologische Kybernetik, University of Heidelberg, August 2008 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in Primary Visual Cortex

Berens, P.

Biologische Kybernetik, Eberhard Karls Universität Tübingen, Tübingen, Germany, April 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Development and Application of a Python Scripting Framework for BCI2000

Schreiner, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, January 2008 (diplomathesis)

ei

[BibTex]

[BibTex]

2007


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

2007


PDF [BibTex]


no image
Error Correcting Codes for the P300 Visual Speller

Biessmann, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)

Abstract
The aim of brain-computer interface (BCI) research is to establish a communication system based on intentional modulation of brain activity. This is accomplished by classifying patterns of brain ac- tivity, volitionally induced by the user. The BCI presented in this study is based on a classical paradigm as proposed by (Farwell and Donchin, 1988), the P300 visual speller. Recording electroencephalo- grams (EEG) from the scalp while presenting letters successively to the user, the speller can infer from the brain signal which letter the user was focussing on. Since EEG recordings are noisy, usually many repetitions are needed to detect the correct letter. The focus of this study was to improve the accuracy of the visual speller applying some basic principles from information theory: Stimulus sequences of the speller have been modified into error-correcting codes. Additionally a language model was incorporated into the probabilistic letter de- coder. Classification of single EEG epochs was less accurate using error correcting codes. However, the novel code could compensate for that such that overall, letter accuracies were as high as or even higher than for classical stimulus codes. In particular at high noise levels, error-correcting decoding achieved higher letter accuracies.

ei

PDF [BibTex]

PDF [BibTex]


no image
A priori Knowledge from Non-Examples

Sinz, FH.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner

Hofmann, M.

Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)

ei

[BibTex]

[BibTex]

2006


no image
Kernel PCA for Image Compression

Huhle, B.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)

ei

PDF [BibTex]

2006


PDF [BibTex]

2005


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

ei

[BibTex]

2005


[BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, TG.

Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)

Abstract
A common task in psychophysics is to measure the psychometric function. A psychometric function can be described by its shape and four parameters: offset or threshold, slope or width, false alarm rate or chance level and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. A new Bayesian adaptive psychometric method placing trials by minimising the expected entropy of the posterior probabilty dis- tribution over a set of possible stimuli is introduced. The method is more flexible, faster and at least as efficient as the established method (Kontsevich and Tyler, 1999). Comparably accurate (2dB) threshold and slope estimates can be obtained after about 30 and 500 trials, respectively. By using a dynamic termination criterion the efficiency can be further improved. The method can be applied to all experimental designs including yes/no designs and allows acquisition of any set of free parameters. By weighting the importance of parameters one can include nuisance parameters and adjust the relative expected errors. Use of nuisance parameters may lead to more accurate estimates than assuming a guessed fixed value. Block designs are supported and do not harm the performance if a sufficient number of trials are performed. The method was evaluated by computer simulations in which the role of parametric assumptions, its robustness, the quality of different point estimates, the effect of dynamic termination criteria and many other settings were investigated.

ei

[BibTex]

[BibTex]

2003


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

2003


[BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

ei

[BibTex]

[BibTex]

2001


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

ei

PostScript [BibTex]

2001


PostScript [BibTex]


Scientific Report 2016 - 2021
Scientific Report 2016 - 2021
(mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January2016 to November 2021. It is our fourth report since the founding of the institute in 2011. Dueto the fact that the upcoming evaluation is an extended one, the report covers a longer reportingperiod.This scientific report is organized as follows: we begin with an overview of the institute, includingan outline of its structure, an introduction of our latest research departments, and a presentationof our main collaborative initiatives and activities (Chapter1). The central part of the scientificreport consists of chapters on the research conducted by the institute’s departments (Chapters2to6) and its independent research groups (Chapters7 to24), as well as the work of the institute’scentral scientific facilities (Chapter25). For entities founded after January 2016, the respectivereport sections cover work done from the date of the establishment of the department, group, orfacility. These chapters are followed by a summary of selected outreach activities and scientificevents hosted by the institute (Chapter26). The scientific publications of the featured departmentsand research groups published during the 6-year review period complete this scientific report.

ei hi ps pi rm

Scientific Report 2016 - 2021 [BibTex]