Header logo is


2018


no image
Instrumentation, Data, and Algorithms for Visually Understanding Haptic Surface Properties

Burka, A. L.

University of Pennsylvania, Philadelphia, USA, August 2018, Department of Electrical and Systems Engineering (phdthesis)

Abstract
Autonomous robots need to efficiently walk over varied surfaces and grasp diverse objects. We hypothesize that the association between how such surfaces look and how they physically feel during contact can be learned from a database of matched haptic and visual data recorded from various end-effectors' interactions with hundreds of real-world surfaces. Testing this hypothesis required the creation of a new multimodal sensing apparatus, the collection of a large multimodal dataset, and development of a machine-learning pipeline. This thesis begins by describing the design and construction of the Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short), an untethered handheld sensing device that emulates the capabilities of the human senses of vision and touch. Its sensory modalities include RGBD vision, egomotion, contact force, and contact vibration. Three interchangeable end-effectors (a steel tooling ball, an OptoForce three-axis force sensor, and a SynTouch BioTac artificial fingertip) allow for different material properties at the contact point and provide additional tactile data. We then detail the calibration process for the motion and force sensing systems, as well as several proof-of-concept surface discrimination experiments that demonstrate the reliability of the device and the utility of the data it collects. This thesis then presents a large-scale dataset of multimodal surface interaction recordings, including 357 unique surfaces such as furniture, fabrics, outdoor fixtures, and items from several private and public material sample collections. Each surface was touched with one, two, or three end-effectors, comprising approximately one minute per end-effector of tapping and dragging at various forces and speeds. We hope that the larger community of robotics researchers will find broad applications for the published dataset. Lastly, we demonstrate an algorithm that learns to estimate haptic surface properties given visual input. Surfaces were rated on hardness, roughness, stickiness, and temperature by the human experimenter and by a pool of purely visual observers. Then we trained an algorithm to perform the same task as well as infer quantitative properties calculated from the haptic data. Overall, the task of predicting haptic properties from vision alone proved difficult for both humans and computers, but a hybrid algorithm using a deep neural network and a support vector machine achieved a correlation between expected and actual regression output between approximately ρ = 0.3 and ρ = 0.5 on previously unseen surfaces.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


Thumb xl ar
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M. P.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl cover book high 1
Colloidal Chemical Nanomotors

Alarcon-Correa, M.

Colloidal Chemical Nanomotors, pages: 150, Cuvillier Verlag, MPI-IS , June 2018 (phdthesis)

Abstract
Synthetic sophisticated nanostructures represent a fundamental building block for the development of nanotechnology. The fabrication of nanoparticles complex in structure and material composition is key to build nanomachines that can operate as man-made nanoscale motors, which autonomously convert external energy into motion. To achieve this, asymmetric nanoparticles were fabricated combining a physical vapor deposition technique known as NanoGLAD and wet chemical synthesis. This thesis primarily concerns three complex colloidal systems that have been developed: i)Hollow nanocup inclusion complexes that have a single Au nanoparticle in their pocket. The Au particle can be released with an external trigger. ii)The smallest self-propelling nanocolloids that have been made to date, which give rise to a local concentration gradient that causes enhanced diffusion of the particles. iii)Enzyme-powered pumps that have been assembled using bacteriophages as biological nanoscaffolds. This construct also can be used for enzyme recovery after heterogeneous catalysis.

pf

[BibTex]

[BibTex]


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

ps

Official link DOI Project Page [BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
A Causal Perspective on Deep Representation Learning

Suter, R.

ETH Zurich, 2018 (mastersthesis)

ei

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
XMCD investigations on new hard magnetic systems

Chen, Y.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
High-Resolution X-ray Ptychography for Magnetic Imaging

Bykova, I.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2004


no image
Joint Kernel Maps

Weston, J., Schölkopf, B., Bousquet, O., Mann, .., Noble, W.

(131), Max-Planck-Institute for Biological Cybernetics, Tübingen, November 2004 (techreport)

ei

PDF [BibTex]

2004


PDF [BibTex]


no image
Semi-Supervised Induction

Yu, K., Tresp, V., Zhou, D.

(141), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, August 2004 (techreport)

Abstract
Considerable progress was recently achieved on semi-supervised learning, which differs from the traditional supervised learning by additionally exploring the information of the unlabelled examples. However, a disadvantage of many existing methods is that it does not generalize to unseen inputs. This paper investigates learning methods that effectively make use of both labelled and unlabelled data to build predictive functions, which are defined on not just the seen inputs but the whole space. As a nice property, the proposed method allows effcient training and can easily handle new test points. We validate the method based on both toy data and real world data sets.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Object categorization with SVM: kernels for local features

Eichhorn, J., Chapelle, O.

(137), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.

ei

PDF [BibTex]

PDF [BibTex]


no image
Hilbertian Metrics and Positive Definite Kernels on Probability Measures

Hein, M., Bousquet, O.

(126), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and one image classification problem.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernels, Associated Structures and Generalizations

Hein, M., Bousquet, O.

(127), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
This paper gives a survey of results in the mathematical literature on positive definite kernels and their associated structures. We concentrate on properties which seem potentially relevant for Machine Learning and try to clarify some results that have been misused in the literature. Moreover we consider different lines of generalizations of positive definite kernels. Namely we deal with operator-valued kernels and present the general framework of Hilbertian subspaces of Schwartz which we use to introduce kernels which are distributions. Finally indefinite kernels and their associated reproducing kernel spaces are considered.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kamerakalibrierung und Tiefenschätzung: Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen

Sinz, FH.

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany, March 2004 (techreport)

Abstract
Die Arbeit verleicht zwei Herangehensweisen an das Problem der Sch{\"a}tzung der r{\"a}umliche Position eines Punktes aus den Bildkoordinaten in zwei verschiedenen Kameras. Die klassische Methode der B{\"u}ndelblockausgleichung modelliert zwei Einzelkameras und sch{\"a}tzt deren {\"a}ußere und innere Orientierung mit einer iterativen Kalibrationsmethode, deren Konvergenz sehr stark von guten Startwerten abh{\"a}ngt. Die Tiefensch{\"a}tzung eines Punkts geschieht durch die Invertierung von drei der insgesamt vier Projektionsgleichungen der Einzalkameramodelle. Die zweite Methode benutzt Kernel Ridge Regression und Support Vector Regression, um direkt eine Abbildung von den Bild- auf die Raumkoordinaten zu lernen. Die Resultate zeigen, daß der Ansatz mit maschinellem Lernen, neben einer erheblichen Vereinfachung des Kalibrationsprozesses, zu h{\"o}heren Positionsgenaugikeiten f{\"u}hren kann.

ei

PDF [BibTex]

PDF [BibTex]


no image
Multivariate Regression with Stiefel Constraints

Bakir, G., Gretton, A., Franz, M., Schölkopf, B.

(128), MPI for Biological Cybernetics, Spemannstr 38, 72076, Tuebingen, 2004 (techreport)

Abstract
We introduce a new framework for regression between multi-dimensional spaces. Standard methods for solving this problem typically reduce the problem to one-dimensional regression by choosing features in the input and/or output spaces. These methods, which include PLS (partial least squares), KDE (kernel dependency estimation), and PCR (principal component regression), select features based on different a-priori judgments as to their relevance. Moreover, loss function and constraints are chosen not primarily on statistical grounds, but to simplify the resulting optimisation. By contrast, in our approach the feature construction and the regression estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint. A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements, but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to this objective. Our approach also allows for the possibility of using a regularizer in the optimization. Finally, by processing the observations sequentially, our algorithm is able to work on large scale problems.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data Using Random Walks

Zhou, D., Schölkopf, B.

Max Planck Institute for Biological Cybernetics, 2004 (techreport)

Abstract
We consider the general problem of learning from labeled and unlabeled data. Given a set of points, some of them are labeled, and the remaining points are unlabeled. The goal is to predict the labels of the unlabeled points. Any supervised learning algorithm can be applied to this problem, for instance, Support Vector Machines (SVMs). The problem of our interest is if we can implement a classifier which uses the unlabeled data information in some way and has higher accuracy than the classifiers which use the labeled data only. Recently we proposed a simple algorithm, which can substantially benefit from large amounts of unlabeled data and demonstrates clear superiority to supervised learning methods. In this paper we further investigate the algorithm using random walks and spectral graph theory, which shed light on the key steps in this algorithm.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Behaviour and Convergence of the Constrained Covariance

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Schölkopf, B., Logothetis, N.

(130), MPI for Biological Cybernetics, 2004 (techreport)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth, which can make dependence hard to detect empirically. All current kernel-based independence tests share this behaviour. Finally, we demonstrate exponential convergence between the population and empirical COCO, which implies that COCO does not suffer from slow learning rates when used as a dependence test.

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning with Similarity and Dissimilarity Functions

von Luxburg, U.

pages: 1-166, Technische Universität Berlin, Germany, Technische Universität Berlin, Germany, 2004 (phdthesis)

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Confidence Sets for Ratios: A Purely Geometric Approach To Fieller’s Theorem

von Luxburg, U., Franz, V.

(133), Max Planck Institute for Biological Cybernetics, 2004 (techreport)

Abstract
We present a simple, geometric method to construct Fieller's exact confidence sets for ratios of jointly normally distributed random variables. Contrary to previous geometric approaches in the literature, our method is valid in the general case where both sample mean and covariance are unknown. Moreover, not only the construction but also its proof are purely geometric and elementary, thus giving intuition into the nature of the confidence sets.

ei

PDF [BibTex]

PDF [BibTex]


no image
Transductive Inference with Graphs

Zhou, D., Schölkopf, B.

Max Planck Institute for Biological Cybernetics, 2004, See the improved version Regularization on Discrete Spaces. (techreport)

Abstract
We propose a general regularization framework for transductive inference. The given data are thought of as a graph, where the edges encode the pairwise relationships among data. We develop discrete analysis and geometry on graphs, and then naturally adapt the classical regularization in the continuous case to the graph situation. A new and effective algorithm is derived from this general framework, as well as an approach we developed before.

ei

[BibTex]

[BibTex]


no image
Classification and Feature Extraction in Man and Machine

Graf, AAB.

Biologische Kybernetik, University of Tübingen, Germany, 2004, online publication (phdthesis)

ei

[BibTex]

[BibTex]


no image
Investigation of oxide layers in tunnel junctions

Amaladass, E. P.

University of Stuttgart, Stuttgart, 2004 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Untersuchung der Desorptionskinetik von Metallhydriden in Bezug auf technische Anwendungen

von Zeppelin, F.

Universität Stuttgart, Stuttgart, 2004 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Towards Tractable Parameter-Free Statistical Learning (Phd Thesis)

D’Souza, A

Department of Computer Science, University of Southern California, Los Angeles, 2004, clmc (phdthesis)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Dynamik von Wasserstoff in nanokristallinen Systemen

Stanik, E.

Universität Stuttgart, Stuttgart, 2004 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Inselwachstum auf Festkörperoberflächen unter Ionenbestrahlung

Frank, A.

Universität Stuttgart, Stuttgart, 2004 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Flusslinienverankerung in HTSL-Schichten mit kontrollierter Defektstruktur im Nanometerbereich

Leonhardt, S.

Universität Stuttgart, Stuttgart, 2004 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Investigation of the stability of metals on polymers

Amoako, G.

University of Stuttgart, Stuttgart, 2004 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Flusslinienverankerung in Hochtemperatursupraleitern auf nanostrukturierten Substraten

Brück, S.

Universität Stuttgart, Stuttgart, 2004 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Ionenstreuung mit Monolagen-Tiefenauflösung

Olliges, S.

Universität Stuttgart, Stuttgart, 2004 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Untersuchungen zum Magnetismus von Clustern und Nanopartikeln und zum Einfluss der Wechselwirkung mit ihrer Umgebung

Fauth, Kai

Julius-Maximilians-Universität Würzburg, Würzburg, 2004 (phdthesis)

mms

[BibTex]

[BibTex]

2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

PDF Web [BibTex]

2003


PDF Web [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

Kim, K., Franz, M., Schölkopf, B.

(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

Abstract
A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method, a convergence proof, and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to predict the label of the unlabeled points. A principled clue to solve such a learning problem is the consistency assumption that a classifying function should be sufficiently smooth with respect to the structure revealed by these known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

[BibTex]

[BibTex]