Header logo is


2019


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Demo Abstract: Fast Feedback Control and Coordination with Mode Changes for Wireless Cyber-Physical Systems

(Best Demo Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

Proceedings of the 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 340-341, 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), April 2019 (poster)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Thumb xl lic overview
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

[BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl blockdiag
Event-triggered Learning

Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

ics

arXiv PDF [BibTex]


no image
Phenomenal Causality and Sensory Realism

Bruijns, S. A., Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

[BibTex]

2011


no image
Spatiotemporal mapping of rhythmic activity in the inferior convexity of the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Crocker, B., Kapoor, V., Tolias, A., Panzeri, S., Logothetis, N.

41(239.15), 41st Annual Meeting of the Society for Neuroscience (Neuroscience), November 2011 (poster)

Abstract
The inferior convexity of the macaque prefrontal cortex (icPFC) is known to be involved in higher order processing of sensory information mediating stimulus selection, attention and working memory. Until now, the vast majority of electrophysiological investigations of the icPFC employed single electrode recordings. As a result, relatively little is known about the spatiotemporal structure of neuronal activity in this cortical area. Here we study in detail the spatiotemporal properties of local field potentials (LFP's) in the icPFC using multi electrode recordings during anesthesia. We computed the LFP-LFP coherence as a function of frequency for thousands of pairs of simultaneously recorded sites anterior to the arcuate and inferior to the principal sulcus. We observed two distinct peaks of coherent oscillatory activity between approximately 4-10 and 15-25 Hz. We then quantified the instantaneous phase of these frequency bands using the Hilbert transform and found robust phase gradients across recording sites. The dependency of the phase on the spatial location reflects the existence of traveling waves of electrical activity in the icPFC. The dominant axis of these traveling waves roughly followed the ventral-dorsal plane. Preliminary results show that repeated visual stimulation with a 10s movie had no dramatic effect on the spatial structure of the traveling waves. Traveling waves of electrical activity in the icPFC could reflect highly organized cortical processing in this area of prefrontal cortex.

ei

Web [BibTex]

2011


Web [BibTex]


no image
Evaluation and Optimization of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Schmidt, H., Kolb, A., Beyer, T., Reimold, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-96), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
Combined PET/MR provides simultaneous molecular and functional information in an anatomical context with unique soft tissue contrast. However, PET/MR does not support direct derivation of attenuation maps of objects and tissues within the measured PET field-of-view. Valid attenuation maps are required for quantitative PET imaging, specifically for scientific brain studies. Therefore, several methods have been proposed for MR-based attenuation correction (MR-AC). Last year, we performed an evaluation of different MR-AC methods, including simple MR thresholding, atlas- and machine learning-based MR-AC. CT-based AC served as gold standard reference. RoIs from 2 anatomic brain atlases with different levels of detail were used for evaluation of correction accuracy. We now extend our evaluation of different MR-AC methods by using an enlarged dataset of 23 patients from the integrated BrainPET/MR (Siemens Healthcare). Further, we analyze options for improving the MR-AC performance in terms of speed and accuracy. Finally, we assess the impact of ignoring BrainPET positioning aids during the course of MR-AC. This extended study confirms the overall prediction accuracy evaluation results of the first evaluation in a larger patient population. Removing datasets affected by metal artifacts from the Atlas-Patch database helped to improve prediction accuracy, although the size of the database was reduced by one half. Significant improvement in prediction speed can be gained at a cost of only slightly reduced accuracy, while further optimizations are still possible.

ei

Web [BibTex]

Web [BibTex]


no image
Atlas- and Pattern Recognition Based Attenuation Correction on Simultaneous Whole-Body PET/MR

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Hofmann, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-116), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
With the recent availability of clinical whole-body PET/MRI it is possible to evaluate and further develop MR-based attenuation correction methods using simultaneously acquired PET/MR data. We present first results for MRAC on patient data acquired on a fully integrated whole-body PET/MRI (Biograph mMR, Siemens) using our method that applies atlas registration and pattern recognition (ATPR) and compare them to the segmentation-based (SEG) method provided by the manufacturer. The ATPR method makes use of a database of previously aligned pairs of MR-CT volumes to predict attenuation values on a continuous scale. The robustness of the method in presence of MR artifacts was improved by location and size based detection. Lesion to liver and lesion to blood ratios (LLR and LBR) were compared for both methods on 29 iso-contour ROIs in 4 patients. ATPR showed >20% higher LBR and LLR for ROIs in and >7% near osseous tissue. For ROIs in soft tissue, both methods yielded similar ratios with max. differences <6% . For ROIs located within metal artifacts in the MR image, ATPR showed >190% higher LLR and LBR than SEG, where ratios <0.1 occured. For lesions in the neighborhood of artifacts, both ratios were >15% higher for ATPR. If artifacts in MR volumes caused by metal implants are not accounted for in the computation of attenuation maps, they can lead to a strong decrease of lesion to background ratios, even to disappearance of hot spots. Metal implants are likely to occur in the patient collective receiving combined PET/MR scans, of our first 10 patients, 3 had metal implants. Our method is currently able to account for artifacts in the pelvis caused by prostheses. The ability of the ATPR method to account for bone leads to a significant increase of LLR and LBR in osseous tissue, which supports our previous evaluations with combined PET/CT and PET/MR data. For lesions within soft tissue, lesion to background ratios of ATPR and SEG were comparable.

ei

Web [BibTex]

Web [BibTex]


no image
Retrospective blind motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):498, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
We present a retrospective method, which significantly reduces ghosting and blurring artifacts due to subject motion. No modifications to the sequence (as in [2, 3]), or the use of additional equipment (as in [1]) are required. Our method iteratively searches for the transformation, that applied to the lines in k-space -- yields the sparsest Laplacian filter output in the spatial domain.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Model based reconstruction for GRE EPI

Blecher, W., Pohmann, R., Schölkopf, B., Seeger, M.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):493-494, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
Model based nonlinear image reconstruction methods for MRI [3] are at the heart of modern reconstruction techniques (e.g.compressed sensing [6]). In general, models are expressed as a matrix equation where y and u are column vectors of k-space and image data, X model matrix and e independent noise. However, solving the corresponding linear system is not tractable. Therefore fast nonlinear algorithms that minimize a function wrt.the unknown image are the method of choice: In this work a model for gradient echo EPI, is proposed that incorporates N/2 Ghost correction and correction for field inhomogeneities. In addition to reconstruction from full data, the model allows for sparse reconstruction, joint estimation of image, field-, and relaxation-map (like [5,8] for spiral imaging), and improved N/2 ghost correction.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simultaneous multimodal imaging of patients with bronchial carcinoma in a whole body MR/PET system

Brendle, C., Sauter, A., Schmidt, H., Schraml, C., Bezrukov, I., Martirosian, P., Hetzel, J., Müller, M., Claussen, C., Schwenzer, N., Pfannenberg, C.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):141, 28th annual scientific meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRB), October 2011 (poster)

Abstract
Purpose/Introduction: Lung cancer is among the most frequent cancers (1). Exact determination of tumour extent and viability is crucial for adequate therapy guidance. [18F]-FDG-PET allows accurate staging and the evaluation of therapy response based on glucose metabolism. Diffusion weighted MRI (DWI) is another promising tool for the evaluation of tumour viability (2,3). The aim of the study was the simultaneous PET-MR acquisition in lung cancer patients and correlation of PET and MR data. Subjects and Methods: Seven patients (age 38-73 years, mean 61 years) with highly suspected or known bronchial carcinoma were examined. First, a [18F]-FDG-PET/CT was performed (injected dose: 332-380 MBq). Subsequently, patients were examined at the whole-body MR/PET (Siemens Biograph mMR). The MRI is a modified 3T Verio whole body system with a magnet bore of 60 cm (max. amplitude gradients 45 mT/m, max. slew rate 200 T/m/s). Concerning the PET, the whole-body MR/PET system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The following parameters for PET acquisition were applied: 2 bed positions, 6 min/bed with an average uptake time of 124 min after injection (range: 110-143 min). The attenuation correction of PET data was conducted with a segmentation-based method provided by the manufacturer. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. DWI MR images were recorded simultaneously for each bed using two b-values (0/800 s/mm2). SUVmax and ADCmin were assessed in a ROI analysis. The following ratios were calculated: SUVmax(tumor)/SUVmean(liver) and ADCmin(tumor)/ADCmean(muscle). Correlation between SUV and ADC was analyzed (Pearson’s correlation). Results: Diagnostic scans could be obtained in all patients with good tumour delineation. The spatial matching of PET and DWI data was very exact. Most tumours showed a pronounced FDG-uptake in combination with decreased ADC values. Significant correlation was found between SUV and ADC ratios (r = -0.87, p = 0.0118). Discussion/Conclusion: Simultaneous MR/PET imaging of lung cancer is feasible. The whole-body MR/PET system can provide complementary information regarding tumour viability and cellularity which could facilitate a more profound tumour characterization. Further studies have to be done to evaluate the importance of these parameters for therapy decisions and monitoring

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

ei

PDF [BibTex]

PDF [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

ei

Web [BibTex]

Web [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for finding deletions and short insertions using paired-end short reads

Grimm, D., Hagmann, J., König, D., Weigel, D., Borgwardt, KM.

International Conference on Intelligent Systems for Molecular Biology (ISMB), 2011 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

Empirical Inference Symposium, 2011 (poster)

ei

[BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

ei

PDF [BibTex]

PDF [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

Neural Information Processing Systems (NIPS), 2011 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

am

[BibTex]

[BibTex]


no image
Ferromagnetism of ZnO influenced by physical and chemical treatment

Chen, Y.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung von ultradünnen, funktionellen CoFeB Filmen

Streckenbach, F.

Hochschule Esslingen / Hochschule Aalen, Esslingen / Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption on metal-organic frameworks

Streppel, B.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Piezo driven strain effects on magneto-crystalline anisotropy

Badr, E.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an granularen und beschichteten MgB2 Filmen

Stahl, C.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Mikromagnetismus der Wechselwirkung von Spinwellen mit Domänenwänden in Ferromagneten

Macke, S.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Qualifizierung gesputterter Magnesiumdiboridschichten

Breyer, F.

Hochschule Aalen, Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Study of krypton/xenon storage and separation in microporous frameworks

Soleimani Dorcheh, A.

Universität Darmstadt, Darmstadt, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

Web [BibTex]

2009


Web [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Clinical PET/MRI-System and Its Applications with MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Schlemmer, H., Claussen, C., Pichler, B.

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), 2009, pages: 1, October 2009 (poster)

Abstract
Clinical PET/MRI is an emerging new hybrid imaging modality. In addition to provide an unique possibility for multifunctional imaging with temporally and spatially matched data, it also provides anatomical information that can also be used for attenuation correction with no radiation exposure to the subjects. A plus of combined compared to sequential PET and MR imaging is the reduction of total scan time. Here we present our initial experience with a hybrid brain PET/MRI system. Due to the ethical approval patient scans could only be performed after a diagnostic PET/CT. We estimate that in approximately 50% of the cases PET/MRI was of superior diagnostic value compared to PET/CT and was able to provide additional information, such as DTI, spectroscopy and Time Of Flight (TOF) angiography. Here we present 3 patient cases in oncology, a retropharyngeal carcinoma in neurooncology, a relapsing meningioma and in neurology a pharyngeal carcinoma in addition to an infraction of the right hemisphere. For quantitative PET imaging attenuation correction is obligatory. In current PET/MRI setup we used our MRI based atlas method for calculating the mu-map for attenuation correction. MR-based attenuation correction accuracy was quantitatively compared to CT-based PET attenuation correction. Extensive studies to assess potential mutual interferences between PET and MR imaging modalities as well as NEMA measurements have been performed. The first patient studies as well as the phantom tests clearly demonstrated the overall good imaging performance of this first human PET/MRI system. Ongoing work concentrates on advanced normalization and reconstruction methods incorporating count-rate based algorithms.

ei

Web [BibTex]

Web [BibTex]


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

ei

PDF [BibTex]

PDF [BibTex]