Header logo is


2016


no image
Autofocusing-based correction of B0 fluctuation-induced ghosting

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2016 (poster)

ei

link (url) [BibTex]

2016


link (url) [BibTex]


no image
Distinct adaptation to abrupt and gradual torque perturbations with a multi-joint exoskeleton robot

Oh, Y., Sutanto, G., Mistry, M., Schweighofer, N., Schaal, S.

Abstracts of Neural Control of Movement Conference (NCM 2016), Montego Bay, Jamaica, April 2016 (poster)

am

[BibTex]

[BibTex]


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

PDF [BibTex]


no image
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Hippocampal neural events predict ongoing brain-wide BOLD activity

Besserve, M., Logothetis, N. K.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]

2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


no image
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

ei

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

ei

[BibTex]

[BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

ei

[BibTex]

[BibTex]

2007


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Brady, M., Schölkopf, B., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M16-6):1-2, November 2007 (poster)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF PDF [BibTex]

2007


PDF PDF [BibTex]


no image
Estimating receptive fields without spike-triggering

Macke, J., Zeck, G., Bethge, M.

37th annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37(768.1):1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Evaluation of Deformable Registration Methods for MR-CT Atlas Alignment

Scheel, V., Hofmann, M., Rehfeld, N., Judenhofer, M., Claussen, C., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M13-121):1, November 2007 (poster)

Abstract
Deformable registration methods are essential for multimodality imaging. Many different methods exist but due to the complexity of the deformed images a direct comparison of the methods is difficult. One particular application that requires high accuracy registration of MR-CT images is atlas-based attenuation correction for PET/MR. We compare four deformable registration algorithms for 3D image data included in the Open Source "National Library of Medicine Insight Segmentation and Registration Toolkit" (ITK). An interactive landmark based registration using MiraView (Siemens) has been used as gold standard. The automatic algorithms provided by ITK are based on the metrics Mattes mutual information as well as on normalized mutual information. The transformations are calculated by interpolating over a uniform B-Spline grid laying over the image to be warped. The algorithms were tested on head images from 10 subjects. We implemented a measure which segments head interior bone and air based on the CT images and l ow intensity classes of corresponding MRI images. The segmentation of bone is performed by individually calculating the lowest Hounsfield unit threshold for each CT image. The compromise is made by quantifying the number of overlapping voxels of the remaining structures. We show that the algorithms provided by ITK achieve similar or better accuracy than the time-consuming interactive landmark based registration. Thus, ITK provides an ideal platform to generate accurately fused datasets from different modalities, required for example for building training datasets for Atlas-based attenuation correction.

ei

PDF [BibTex]

PDF [BibTex]


no image
A time/frequency decomposition of information transmission by LFPs and spikes in the primary visual cortex

Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M., Logothetis, N., Panzeri, S.

37th Annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37, pages: 1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Mining expression-dependent modules in the human interaction network

Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.

BMC Bioinformatics, 8(Suppl. 8):S4, November 2007 (poster)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A Hilbert Space Embedding for Distributions

Smola, A., Gretton, A., Song, L., Schölkopf, B.

Proceedings of the 10th International Conference on Discovery Science (DS 2007), 10, pages: 40-41, October 2007 (poster)

Abstract
While kernel methods are the basis of many popular techniques in supervised learning, they are less commonly used in testing, estimation, and analysis of probability distributions, where information theoretic approaches rule the roost. However it becomes difficult to estimate mutual information or entropy if the data are high dimensional.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Learning with Transformation Invariant Kernels

Walder, C., Chapelle, O.

(165), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2007 (techreport)

Abstract
Abstract. This paper considers kernels invariant to translation, rotation and dilation. We show that no non-trivial positive definite (p.d.) kernels exist which are radial and dilation invariant, only conditionally positive definite (c.p.d.) ones. Accordingly, we discuss the c.p.d. case and provide some novel analysis, including an elementary derivation of a c.p.d. representer theorem. On the practical side, we give a support vector machine (s.v.m.) algorithm for arbitrary c.p.d. kernels. For the thin-plate kernel this leads to a classifier with only one parameter (the amount of regularisation), which we demonstrate to be as effective as an s.v.m. with the Gaussian kernel, even though the Gaussian involves a second parameter (the length scale).

ei

PDF [BibTex]

PDF [BibTex]


no image
Studying the effects of noise correlations on population coding using a sampling method

Ecker, A., Berens, P., Bethge, M., Logothetis, N., Tolias, A.

Neural Coding, Computation and Dynamics (NCCD 07), 1, pages: 21, September 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Scalable Semidefinite Programming using Convex Perturbations

Kulis, B., Sra, S., Jegelka, S.

(TR-07-47), University of Texas, Austin, TX, USA, September 2007 (techreport)

Abstract
Several important machine learning problems can be modeled and solved via semidefinite programs. Often, researchers invoke off-the-shelf software for the associated optimization, which can be inappropriate for many applications due to computational and storage requirements. In this paper, we introduce the use of convex perturbations for semidefinite programs (SDPs). Using a particular perturbation function, we arrive at an algorithm for SDPs that has several advantages over existing techniques: a) it is simple, requiring only a few lines of MATLAB, b) it is a first-order method which makes it scalable, c) it can easily exploit the structure of a particular SDP to gain efficiency (e.g., when the constraint matrices are low-rank). We demonstrate on several machine learning applications that the proposed algorithm is effective in finding fast approximations to large-scale SDPs.

ei

PDF [BibTex]

PDF [BibTex]


no image
Near-Maximum Entropy Models for Binary Neural Representations of Natural Images

Berens, P., Bethge, M.

Neural Coding, Computation and Dynamics (NCCD 07), 1, pages: 19, September 2007 (poster)

Abstract
Maximum entropy analysis of binary variables provides an elegant way for studying the role of pairwise correlations in neural populations. Unfortunately, these approaches suffer from their poor scalability to high dimensions. In sensory coding, however, high-dimensional data is ubiquitous. Here, we introduce a new approach using a near-maximum entropy model, that makes this type of analysis feasible for very high-dimensional data---the model parameters can be derived in closed form and sampling is easy. We demonstrate its usefulness by studying a simple neural representation model of natural images. For the first time, we are able to directly compare predictions from a pairwise maximum entropy model not only in small groups of neurons, but also in larger populations of more than thousand units. Our results indicate that in such larger networks interactions exist that are not predicted by pairwise correlations, despite the fact that pairwise correlations explain the lower-dimensional marginal statistics extrem ely well up to the limit of dimensionality where estimation of the full joint distribution is feasible.

ei

PDF [BibTex]

PDF [BibTex]


no image
Sparse Multiscale Gaussian Process Regression

Walder, C., Kim, K., Schölkopf, B.

(162), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their computations on a set of m basis functions that are the covariance function of the g.p. with one of its two inputs fixed. We generalise this for the case of Gaussian covariance function, by basing our computations on m Gaussian basis functions with arbitrary diagonal covariance matrices (or length scales). For a fixed number of basis functions and any given criteria, this additional flexibility permits approximations no worse and typically better than was previously possible. Although we focus on g.p. regression, the central idea is applicable to all kernel based algorithms, such as the support vector machine. We perform gradient based optimisation of the marginal likelihood, which costs O(m2n) time where n is the number of data points, and compare the method to various other sparse g.p. methods. Our approach outperforms the other methods, particularly for the case of very few basis functions, i.e. a very high sparsity ratio.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Subwindow Search for Object Localization

Blaschko, M., Hofmann, T., Lampert, C.

(164), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Recent years have seen huge advances in object recognition from images. Recognition rates beyond 95% are the rule rather than the exception on many datasets. However, most state-of-the-art methods can only decide if an object is present or not. They are not able to provide information on the object location or extent within in the image. We report on a simple yet powerful scheme that extends many existing recognition methods to also perform localization of object bounding boxes. This is achieved by maximizing the classification score over all possible subrectangles in the image. Despite the impression that this would be computationally intractable, we show that in many situations efficient algorithms exist which solve a generalized maximum subrectangle problem. We show how our method is applicable to a variety object detection frameworks and demonstrate its performance by applying it to the popular bag of visual words model, achieving competitive results on the PASCAL VOC 2006 dataset.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning the Influence of Spatio-Temporal Variations in Local Image Structure on Visual Saliency

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

10th T{\"u}binger Wahrnehmungskonferenz (TWK 2007), 10, pages: 1, July 2007 (poster)

Abstract
Computational models for bottom-up visual attention traditionally consist of a bank of Gabor-like or Difference-of-Gaussians filters and a nonlinear combination scheme which combines the filter responses into a real-valued saliency measure [1]. Recently it was shown that a standard machine learning algorithm can be used to derive a saliency model from human eye movement data with a very small number of additional assumptions. The learned model is much simpler than previous models, but nevertheless has state-of-the-art prediction performance [2]. A central result from this study is that DoG-like center-surround filters emerge as the unique solution to optimizing the predictivity of the model. Here we extend the learning method to the temporal domain. While the previous model [2] predicts visual saliency based on local pixel intensities in a static image, our model also takes into account temporal intensity variations. We find that the learned model responds strongly to temporal intensity changes ocurring 200-250ms before a saccade is initiated. This delay coincides with the typical saccadic latencies, indicating that the learning algorithm has extracted a meaningful statistic from the training data. In addition, we show that the model correctly predicts a significant proportion of human eye movements on previously unseen test data.

ei

Web [BibTex]

Web [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

(163), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, May 2007 (techreport)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

ei

PDF [BibTex]

PDF [BibTex]


no image
Better Codes for the P300 Visual Speller

Biessmann, F., Hill, N., Farquhar, J., Schölkopf, B.

G{\"o}ttingen Meeting of the German Neuroscience Society, 7, pages: 123, March 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Do We Know What the Early Visual System Computes?

Bethge, M., Kayser, C.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 352, March 2007 (poster)

Abstract
Decades of research provided much data and insights into the mechanisms of the early visual system. Currently, however, there is great controversy on whether these findings can provide us with a thorough functional understanding of what the early visual system does, or formulated differently, of what it computes. At the Society for Neuroscience meeting 2005 in Washington, a symposium was held on the question "Do we know that the early visual system does", which was accompanied by a widely regarded publication in the Journal of Neuroscience. Yet, that discussion was rather specialized as it predominantly addressed the question of how well neural responses in retina, LGN, and cortex can be predicted from noise stimuli, but did not emphasize the question of whether we understand what the function of these early visual areas is. Here we will concentrate on this neuro-computational aspect of vision. Experts from neurobiology, psychophysics and computational neuroscience will present studies which approach this question from different viewpoints and promote a critical discussion of whether we actually understand what early areas contribute to the processing and perception of visual information.

ei

PDF [BibTex]

PDF [BibTex]


no image
Implicit Wiener Series for Estimating Nonlinear Receptive Fields

Franz, MO., Macke, JH., Saleem, A., Schultz, SR.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 1199, March 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

Chiappa, S., Barber, D.

(161), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, March 2007 (techreport)

Abstract
We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models in order to (semi) automatically determine an appropriate number of components in the mixture, and to additionally bias the components to a parsimonious parameterization. The resulting models are formally intractable and to deal with this we describe a deterministic approximation based on a novel implementation of Variational Bayes.

ei

PDF [BibTex]

PDF [BibTex]


no image
3D Reconstruction of Neural Circuits from Serial EM Images

Maack, N., Kapfer, C., Macke, J., Schölkopf, B., Denk, W., Borst, A.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 1195, March 2007 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Identifying temporal population codes in the retina using canonical correlation analysis

Bethge, M., Macke, J., Gerwinn, S., Zeck, G.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 359, March 2007 (poster)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Bayesian Neural System identification: error bars, receptive fields and neural couplings

Gerwinn, S., Seeger, M., Zeck, G., Bethge, M.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 360, March 2007 (poster)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
About the Triangle Inequality in Perceptual Spaces

Jäkel, F., Schölkopf, B., Wichmann, F.

Proceedings of the Computational and Systems Neuroscience Meeting 2007 (COSYNE), 4, pages: 308, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Automatic 3D Face Reconstruction from Single Images or Video

Breuer, P., Kim, K., Kienzle, W., Blanz, V., Schölkopf, B.

(160), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2007 (techreport)

Abstract
This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are detected using a novel regression-and classification-based approach, and probabilistically plausible configurations of features are selected to produce a list of candidates for several facial feature positions. In the next step, the configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a combination of linear projections. Finally, the feature points initialize a model-fitting procedure of the Morphable Model. The result is a high-resolution 3D surface model.

ei

PDF [BibTex]

PDF [BibTex]


no image
Center-surround filters emerge from optimizing predictivity in a free-viewing task

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Proceedings of the Computational and Systems Neuroscience Meeting 2007 (COSYNE), 4, pages: 207, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Nonlinear Receptive Field Analysis: Making Kernel Methods Interpretable

Kienzle, W., Macke, J., Wichmann, F., Schölkopf, B., Franz, M.

Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007), 4, pages: 16, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Estimating Population Receptive Fields in Space and Time

Macke, J., Zeck, G., Bethge, M.

Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007), 4, pages: 44, February 2007 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

am ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Learning an Outlier-Robust Kalman Filter

Ting, J., Theodorou, E., Schaal, S.

CLMC Technical Report: TR-CLMC-2007-1, Los Angeles, CA, 2007, clmc (techreport)

Abstract
We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step?s state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

am

PDF [BibTex]

PDF [BibTex]

2005


no image
Popper, Falsification and the VC-dimension

Corfield, D., Schölkopf, B., Vapnik, V.

(145), Max Planck Institute for Biological Cybernetics, November 2005 (techreport)

ei

PDF [BibTex]

2005


PDF [BibTex]


no image
Kernel methods for dependence testing in LFP-MUA

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

35(689.17), 35th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2005 (poster)

Abstract
A fundamental problem in neuroscience is determining whether or not particular neural signals are dependent. The correlation is the most straightforward basis for such tests, but considerable work also focuses on the mutual information (MI), which is capable of revealing dependence of higher orders that the correlation cannot detect. That said, there are other measures of dependence that share with the MI an ability to detect dependence of any order, but which can be easier to compute in practice. We focus in particular on tests based on the functional covariance, which derive from work originally accomplished in 1959 by Renyi. Conceptually, our dependence tests work by computing the covariance between (infinite dimensional) vectors of nonlinear mappings of the observations being tested, and then determining whether this covariance is zero - we call this measure the constrained covariance (COCO). When these vectors are members of universal reproducing kernel Hilbert spaces, we can prove this covariance to be zero only when the variables being tested are independent. The greatest advantage of these tests, compared with the mutual information, is their simplicity – when comparing two signals, we need only take the largest eigenvalue (or the trace) of a product of two matrices of nonlinearities, where these matrices are generally much smaller than the number of observations (and are very simple to construct). We compare the mutual information, the COCO, and the correlation in the context of finding changes in dependence between the LFP and MUA signals in the primary visual cortex of the anaesthetized macaque, during the presentation of dynamic natural stimuli. We demonstrate that the MI and COCO reveal dependence which is not detected by the correlation alone (which we prove by artificially removing all correlation between the signals, and then testing their dependence with COCO and the MI); and that COCO and the MI give results consistent with each other on our data.

ei

Web [BibTex]

Web [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 5(8):602, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70%. However, performance was similar (67%) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Combinatorial View of Graph Laplacians

Huang, J.

(144), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2005 (techreport)

Abstract
Discussions about different graph Laplacian, mainly normalized and unnormalized versions of graph Laplacian, have been ardent with respect to various methods in clustering and graph based semi-supervised learning. Previous research on graph Laplacians investigated their convergence properties to Laplacian operators on continuous manifolds. There is still no strong proof on convergence for the normalized Laplacian. In this paper, we analyze different variants of graph Laplacians directly from the ways solving the original graph partitioning problem. The graph partitioning problem is a well-known combinatorial NP hard optimization problem. The spectral solutions provide evidence that normalized Laplacian encodes more reasonable considerations for graph partitioning. We also provide some examples to show their differences.

ei

[BibTex]

[BibTex]


no image
Beyond Pairwise Classification and Clustering Using Hypergraphs

Zhou, D., Huang, J., Schölkopf, B.

(143), Max Planck Institute for Biological Cybernetics, August 2005 (techreport)

Abstract
In many applications, relationships among objects of interest are more complex than pairwise. Simply approximating complex relationships as pairwise ones can lead to loss of information. An alternative for these applications is to analyze complex relationships among data directly, without the need to first represent the complex relationships into pairwise ones. A natural way to describe complex relationships is to use hypergraphs. A hypergraph is a graph in which edges can connect more than two vertices. Thus we consider learning from a hypergraph, and develop a general framework which is applicable to classification and clustering for complex relational data. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PDF [BibTex]

PDF [BibTex]