Header logo is


2018


no image
Instrumentation, Data, and Algorithms for Visually Understanding Haptic Surface Properties

Burka, A. L.

University of Pennsylvania, Philadelphia, USA, August 2018, Department of Electrical and Systems Engineering (phdthesis)

Abstract
Autonomous robots need to efficiently walk over varied surfaces and grasp diverse objects. We hypothesize that the association between how such surfaces look and how they physically feel during contact can be learned from a database of matched haptic and visual data recorded from various end-effectors' interactions with hundreds of real-world surfaces. Testing this hypothesis required the creation of a new multimodal sensing apparatus, the collection of a large multimodal dataset, and development of a machine-learning pipeline. This thesis begins by describing the design and construction of the Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short), an untethered handheld sensing device that emulates the capabilities of the human senses of vision and touch. Its sensory modalities include RGBD vision, egomotion, contact force, and contact vibration. Three interchangeable end-effectors (a steel tooling ball, an OptoForce three-axis force sensor, and a SynTouch BioTac artificial fingertip) allow for different material properties at the contact point and provide additional tactile data. We then detail the calibration process for the motion and force sensing systems, as well as several proof-of-concept surface discrimination experiments that demonstrate the reliability of the device and the utility of the data it collects. This thesis then presents a large-scale dataset of multimodal surface interaction recordings, including 357 unique surfaces such as furniture, fabrics, outdoor fixtures, and items from several private and public material sample collections. Each surface was touched with one, two, or three end-effectors, comprising approximately one minute per end-effector of tapping and dragging at various forces and speeds. We hope that the larger community of robotics researchers will find broad applications for the published dataset. Lastly, we demonstrate an algorithm that learns to estimate haptic surface properties given visual input. Surfaces were rated on hardness, roughness, stickiness, and temperature by the human experimenter and by a pool of purely visual observers. Then we trained an algorithm to perform the same task as well as infer quantitative properties calculated from the haptic data. Overall, the task of predicting haptic properties from vision alone proved difficult for both humans and computers, but a hybrid algorithm using a deep neural network and a support vector machine achieved a correlation between expected and actual regression output between approximately ρ = 0.3 and ρ = 0.5 on previously unseen surfaces.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


Thumb xl ar
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M. P.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl cover book high 1
Colloidal Chemical Nanomotors

Alarcon-Correa, M.

Colloidal Chemical Nanomotors, pages: 150, Cuvillier Verlag, MPI-IS , June 2018 (phdthesis)

Abstract
Synthetic sophisticated nanostructures represent a fundamental building block for the development of nanotechnology. The fabrication of nanoparticles complex in structure and material composition is key to build nanomachines that can operate as man-made nanoscale motors, which autonomously convert external energy into motion. To achieve this, asymmetric nanoparticles were fabricated combining a physical vapor deposition technique known as NanoGLAD and wet chemical synthesis. This thesis primarily concerns three complex colloidal systems that have been developed: i)Hollow nanocup inclusion complexes that have a single Au nanoparticle in their pocket. The Au particle can be released with an external trigger. ii)The smallest self-propelling nanocolloids that have been made to date, which give rise to a local concentration gradient that causes enhanced diffusion of the particles. iii)Enzyme-powered pumps that have been assembled using bacteriophages as biological nanoscaffolds. This construct also can be used for enzyme recovery after heterogeneous catalysis.

pf

[BibTex]

[BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

ps

Official link DOI Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
A Causal Perspective on Deep Representation Learning

Suter, R.

ETH Zurich, 2018 (mastersthesis)

ei

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
XMCD investigations on new hard magnetic systems

Chen, Y.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
High-Resolution X-ray Ptychography for Magnetic Imaging

Bykova, I.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

PDF Web [BibTex]

2003


PDF Web [BibTex]


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

Kim, K., Franz, M., Schölkopf, B.

(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

Abstract
A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method, a convergence proof, and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to predict the label of the unlabeled points. A principled clue to solve such a learning problem is the consistency assumption that a classifying function should be sufficiently smooth with respect to the structure revealed by these known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

[BibTex]

[BibTex]


no image
Implicit Wiener Series

Franz, M., Schölkopf, B.

(114), Max Planck Institute for Biological Cybernetics, June 2003 (techreport)

Abstract
The Wiener series is one of the standard methods to systematically characterize the nonlinearity of a neural system. The classical estimation method of the expansion coefficients via cross-correlation suffers from severe problems that prevent its application to high-dimensional and strongly nonlinear systems. We propose a new estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems. Numerical experiments show performance advantages in terms of convergence, interpretability and system size that can be handled.

ei

PDF [BibTex]

PDF [BibTex]


no image
Machine Learning approaches to protein ranking: discriminative, semi-supervised, scalable algorithms

Weston, J., Leslie, C., Elisseeff, A., Noble, W.

(111), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2003 (techreport)

Abstract
A key tool in protein function discovery is the ability to rank databases of proteins given a query amino acid sequence. The most successful method so far is a web-based tool called PSI-BLAST which uses heuristic alignment of a profile built using the large unlabeled database. It has been shown that such use of global information via an unlabeled data improves over a local measure derived from a basic pairwise alignment such as performed by PSI-BLAST's predecessor, BLAST. In this article we look at ways of leveraging techniques from the field of machine learning for the problem of ranking. We show how clustering and semi-supervised learning techniques, which aim to capture global structure in data, can significantly improve over PSI-BLAST.

ei

PDF [BibTex]

PDF [BibTex]


no image
The Geometry Of Kernel Canonical Correlation Analysis

Kuss, M., Graepel, T.

(108), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2003 (techreport)

Abstract
Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators are used to illustrate the relations between canonical vectors and variates. The article then addresses the problem of CCA between spaces spanned by objects mapped into kernel feature spaces. An exact solution for this kernel canonical correlation (KCCA) problem is derived from a geometric point of view. It shows that the expansion coefficients of the canonical vectors in their respective feature space can be found by linear CCA in the basis induced by kernel principal component analysis. The effect of mappings into higher dimensional feature spaces is considered critically since it simplifies the CCA problem in general. Then two regularized variants of KCCA are discussed. Relations to other methods are illustrated, e.g., multicategory kernel Fisher discriminant analysis, kernel principal component regression and possible applications thereof in blind source separation.

ei

PDF [BibTex]

PDF [BibTex]


no image
The Kernel Mutual Information

Gretton, A., Herbrich, R., Smola, A.

Max Planck Institute for Biological Cybernetics, April 2003 (techreport)

Abstract
We introduce two new functions, the kernel covariance (KC) and the kernel mutual information (KMI), to measure the degree of independence of several continuous random variables. The former is guaranteed to be zero if and only if the random variables are pairwise independent; the latter shares this property, and is in addition an approximate upper bound on the mutual information, as measured near independence, and is based on a kernel density estimate. We show that Bach and Jordan‘s kernel generalised variance (KGV) is also an upper bound on the same kernel density estimate, but is looser. Finally, we suggest that the addition of a regularising term in the KGV causes it to approach the KMI, which motivates the introduction of this regularisation. The performance of the KC and KMI is verified in the context of instantaneous independent component analysis (ICA), by recovering both artificial and real (musical) signals following linear mixing.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Phase Information and the Recognition of Natural Images

Braun, D., Wichmann, F., Gegenfurtner, K.

6, pages: 138, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Fourier phase plays an important role in determining image structure. For example, when the phase spectrum of an image showing a ower is swapped with the phase spectrum of an image showing a tank, then we will usually perceive a tank in the resulting image, even though the amplitude spectrum is still that of the ower. Also, when the phases of an image are randomly swapped across frequencies, the resulting image becomes impossible to recognize. Our goal was to evaluate the e ect of phase manipulations in a more quantitative manner. On each trial subjects viewed two images of natural scenes. The subject had to indicate which one of the two images contained an animal. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was uniformly distributed in the interval [;+], where  was varied between 0 degree and 180 degrees. Image pairs were displayed for 100 msec. Subjects were remarkably resistant to the addition of phase noise. Even with [120; 120] degree noise, subjects still were at a level of 75% correct. The introduction of phase noise leads to a reduction of image contrast. Subjects were slightly better than a simple prediction based on this contrast reduction. However, when contrast response functions were measured in the same experimental paradigm, we found that performance in the phase noise experiment was signi cantly lower than that predicted by the corresponding contrast reduction.

ei

Web [BibTex]

Web [BibTex]


no image
Constraints measures and reproduction of style in robot imitation learning

Bakir, GH., Ilg, W., Franz, MO., Giese, M.

6, pages: 70, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning is frequently discussed as a method for generating complex behaviors in robots by imitating human actors. The kinematic and the dynamic properties of humans and robots are typically quite di erent, however. For this reason observed human trajectories cannot be directly transferred to robots, even if their geometry is humanoid. Instead the human trajectory must be approximated by trajectories that can be realized by the robot. During this approximation deviations from the human trajectory may arise that change the style of the executed movement. Alternatively, the style of the movement might be well reproduced, but the imitated trajectory might be suboptimal with respect to di erent constraint measures from robotics control, leading to non-robust behavior. Goal of the presented work is to quantify this trade-o between \imitation quality" and constraint compatibility for the imitation of complex writing movements. In our experiment, we used trajectory data from human writing movements (see the abstract of Ilg et al. in this volume). The human trajectories were mapped onto robot trajectories by minimizing an error measure that integrates constraints that are important for the imitation of movement style and a regularizing constraint that ensures smooth joint trajectories with low velocities. In a rst experiment, both the end-e ector position and the shoulder angle of the robot were optimized in order to achieve good imitation together with accurate control of the end-e ector position. In a second experiment only the end-e ector trajectory was imitated whereas the motion of the elbow joint was determined using the optimal inverse kinematic solution for the robot. For both conditions di erent constraint measures (dexterity and relative jointlimit distances) and a measure for imitation quality were assessed. By controling the weight of the regularization term we can vary continuously between robot behavior optimizing imitation quality, and behavior minimizing joint velocities.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Study of Human Classification using Psychophysics and Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

6, pages: 149, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), Febuary 2003 (poster)

Abstract
We attempt to reach a better understanding of classi cation in humans using both psychophysical and machine learning techniques. In our psychophysical paradigm the stimuli presented to the human subjects are modi ed using machine learning algorithms according to their responses. Frontal views of human faces taken from a processed version of the MPI face database are employed for a gender classi cation task. The processing assures that all heads have same mean intensity, same pixel-surface area and are centered. This processing stage is followed by a smoothing of the database in order to eliminate, as much as possible, scanning artifacts. Principal Component Analysis is used to obtain a low-dimensional representation of the faces in the database. A subject is asked to classify the faces and experimental parameters such as class (i.e. female/male), con dence ratings and reaction times are recorded. A mean classi cation error of 14.5% is measured and, on average, 0.5 males are classi ed as females and 21.3females as males. The mean reaction time for the correctly classi ed faces is 1229 +- 252 [ms] whereas the incorrectly classi ed faces have a mean reaction time of 1769 +- 304 [ms] showing that the reaction times increase with the subject's classi- cation error. Reaction times are also shown to decrease with increasing con dence, both for the correct and incorrect classi cations. Classi cation errors, reaction times and con dence ratings are then correlated to concepts of machine learning such as separating hyperplane obtained when considering Support Vector Machines, Relevance Vector Machines, boosted Prototype and K-means Learners. Elements near the separating hyperplane are found to be classi ed with more errors than those away from it. In addition, the subject's con dence increases when moving away from the hyperplane. A preliminary analysis on the available small number of subjects indicates that K-means classi cation seems to re ect the subject's classi cation behavior best. The above learnersare then used to generate \special" elements, or representations, of the low-dimensional database according to the labels given by the subject. A memory experiment follows where the representations are shown together with faces seen or unseen during the classi cation experiment. This experiment aims to assess the representations by investigating whether some representations, or special elements, are classi ed as \seen before" despite that they never appeared in the classi cation experiment, possibly hinting at their use during human classi cation.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Representation of Complex Movement Sequences Based on Hierarchical Spatio-Temporal Correspondence for Imitation Learning in Robotics

Ilg, W., Bakir, GH., Franz, MO., Giese, M.

6, pages: 74, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning of complex movements has become a popular topic in neuroscience, as well as in robotics. A number of conceptual as well as practical problems are still unsolved. One example is the determination of the aspects of movements which are relevant for imitation. Problems concerning the movement representation are twofold: (1) The movement characteristics of observed movements have to be transferred from the perceptual level to the level of generated actions. (2) Continuous spaces of movements with variable styles have to be approximated based on a limited number of learned example sequences. Therefore, one has to use representation with a high generalisation capability. We present methods for the representation of complex movement sequences that addresses these questions in the context of the imitation learning of writing movements using a robot arm with human-like geometry. For the transfer of complex movements from perception to action we exploit a learning-based method that represents complex action sequences by linear combination of prototypical examples (Ilg and Giese, BMCV 2002). The method of hierarchical spatio-temporal morphable models (HSTMM) decomposes action sequences automatically into movement primitives. These primitives are modeled by linear combinations of a small number of learned example trajectories. The learned spatio-temporal models are suitable for the analysis and synthesis of long action sequences, which consist of movement primitives with varying style parameters. The proposed method is illustrated by imitation learning of complex writing movements. Human trajectories were recorded using a commercial motion capture system (VICON). In the rst step the recorded writing sequences are decomposed into movement primitives. These movement primitives can be analyzed and changed in style by de ning linear combinations of prototypes with di erent linear weight combinations. Our system can imitate writing movements of di erent actors, synthesize new writing styles and can even exaggerate the writing movements of individual actors. Words and writing movements of the robot look very natural, and closely match the natural styles. These preliminary results makes the proposed method promising for further applications in learning-based robotics. In this poster we focus on the acquisition of the movement representation (identi cation and segmentation of movement primitives, generation of new writing styles by spatio-temporal morphing). The transfer of the generated writing movements to the robot considering the given kinematic and dynamic constraints is discussed in Bakir et al (this volume).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Note on Parameter Tuning for On-Line Shifting Algorithms

Bousquet, O.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

Abstract
In this short note, building on ideas of M. Herbster [2] we propose a method for automatically tuning the parameter of the FIXED-SHARE algorithm proposed by Herbster and Warmuth [3] in the context of on-line learning with shifting experts. We show that this can be done with a memory requirement of $O(nT)$ and that the additional loss incurred by the tuning is the same as the loss incurred for estimating the parameter of a Bernoulli random variable.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Interactive Images

Toyama, K., Schölkopf, B.

(MSR-TR-2003-64), Microsoft Research, Cambridge, UK, 2003 (techreport)

Abstract
Interactive Images are a natural extension of three recent developments: digital photography, interactive web pages, and browsable video. An interactive image is a multi-dimensional image, displayed two dimensions at a time (like a standard digital image), but with which a user can interact to browse through the other dimensions. One might consider a standard video sequence viewed with a video player as a simple interactive image with time as the third dimension. Interactive images are a generalization of this idea, in which the third (and greater) dimensions may be focus, exposure, white balance, saturation, and other parameters. Interaction is handled via a variety of modes including those we call ordinal, pixel-indexed, cumulative, and comprehensive. Through exploration of three novel forms of interactive images based on color, exposure, and focus, we will demonstrate the compelling nature of interactive images.

ei

Web [BibTex]

Web [BibTex]


no image
Models of contrast transfer as a function of presentation time and spatial frequency.

Wichmann, F.

2003 (poster)

Abstract
Understanding contrast transduction is essential for understanding spatial vision. Using standard 2AFC contrast discrimination experiments conducted using a carefully calibrated display we previously showed that the shape of the threshold versus (pedestal) contrast (TvC) curve changes with presentation time and the performance level defined as threshold (Wichmann, 1999; Wichmann & Henning, 1999). Additional experiments looked at the change of the TvC curve with spatial frequency (Bird, Henning & Wichmann, 2002), and at how to constrain the parameters of models of contrast processing (Wichmann, 2002). Here I report modelling results both across spatial frequency and presentation time. An extensive model-selection exploration was performed using Bayesian confidence regions for the fitted parameters as well as cross-validation methods. Bird, C.M., G.B. Henning and F.A. Wichmann (2002). Contrast discrimination with sinusoidal gratings of different spatial frequency. Journal of the Optical Society of America A, 19, 1267-1273. Wichmann, F.A. (1999). Some aspects of modelling human spatial vision: contrast discrimination. Unpublished doctoral dissertation, The University of Oxford. Wichmann, F.A. & Henning, G.B. (1999). Implications of the Pedestal Effect for Models of Contrast-Processing and Gain-Control. OSA Annual Meeting Program, 62. Wichmann, F.A. (2002). Modelling Contrast Transfer in Spatial Vision [Abstract]. Journal of Vision, 2, 7a.

ei

[BibTex]