Header logo is


2017


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


no image
Interface-controlled phenomena in nanomaterials

Mittemeijer, Eric J.; Wang, Zumin

2016 (mpi_year_book)

Abstract
Nanosized material systems characteristically exhibit an excessively high internal interface density. A series of previously unknown phenomena in nanomaterials have been disclosed that are fundamentally caused by the presence of interfaces. Thus anomalously large and small lattice parameters in nanocrystalline metals, quantum stress oscillations in growing nanofilms, and extraordinary atomic mobility at ultralow temperatures have been observed and explained. The attained understanding for these new phenomena can lead to new, sophisticated applications of nanomaterials in advanced technologies.

link (url) [BibTex]

link (url) [BibTex]


no image
Robots learn how to see

Geiger, A.

2016 (mpi_year_book)

Abstract
Autonomous vehicles and intelligent service robots could soon contribute to making our lives more pleasant and secure. However, for autonomous operation such systems first need to learn the perception process itself. This involves measuring distances and motions, detecting objects and interpreting the threedimensional world as a whole. While humans perceive their environment with seemingly little efforts, computers first need to be trained for these tasks. Our research is concerned with developing mathematical models which allow computers to robustly perceive their environment.

link (url) DOI [BibTex]

2007


no image
Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference

Schölkopf, B., Platt, J., Hofmann, T.

Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists--interested in theoretical and applied aspects of modeling, simulating, and building neural-like or intelligent systems. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

ei

Web [BibTex]

2007


Web [BibTex]