Header logo is



no image
Interface-controlled phenomena in nanomaterials

Mittemeijer, Eric J.; Wang, Zumin

2016 (mpi_year_book)

Abstract
Nanosized material systems characteristically exhibit an excessively high internal interface density. A series of previously unknown phenomena in nanomaterials have been disclosed that are fundamentally caused by the presence of interfaces. Thus anomalously large and small lattice parameters in nanocrystalline metals, quantum stress oscillations in growing nanofilms, and extraordinary atomic mobility at ultralow temperatures have been observed and explained. The attained understanding for these new phenomena can lead to new, sophisticated applications of nanomaterials in advanced technologies.

link (url) [BibTex]

link (url) [BibTex]


no image
Robots learn how to see

Geiger, A.

2016 (mpi_year_book)

Abstract
Autonomous vehicles and intelligent service robots could soon contribute to making our lives more pleasant and secure. However, for autonomous operation such systems first need to learn the perception process itself. This involves measuring distances and motions, detecting objects and interpreting the threedimensional world as a whole. While humans perceive their environment with seemingly little efforts, computers first need to be trained for these tasks. Our research is concerned with developing mathematical models which allow computers to robustly perceive their environment.

link (url) DOI [BibTex]

2011


no image
JMLR Workshop and Conference Proceedings Volume 19: COLT 2011

Kakade, S., von Luxburg, U.

pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)

ei

Web [BibTex]

2011


Web [BibTex]


no image
Preparation of high-efficiency nanostructures of crystalline silicon at low temperatures, as catalyzed by metals: The decisive role of interface thermodynamics

Wang, Zumin, Jeurgens, Lars P. H., Mittemeijer, Eric J.

2011 (mpi_year_book)

Abstract
Metals may help to convert semiconductors from a disordered (amorphous) to an ordered (crystalline) form at low temperatures. A general, quantitative model description has been developed on the basis of interface thermodynamics, which provides fundamental understanding of such so-called metal-induced crystallization (MIC) of amorphous semiconductors. This fundamental understanding can allow the low-temperature (< 200 ºC) manufacturing of high-efficiency solar cells and crystalline-Si-based nanostructures on cheap and flexible substrates such as glasses, plastics and possibly even papers.

link (url) [BibTex]


no image
The sweet coat of living cells – from supramolecular organization and dynamics to biological function

Richter, Ralf

2011 (mpi_year_book)

Abstract
Many biological cells endow themselves with a sugar-rich coat that plays a key role in the protection of the cell and in structuring and communicating with its environment. An outstanding property of these pericellular coats is their dynamic self-organization into strongly hydrated and gel-like meshworks. Tailor-made model systems that are constructed from the molecular building blocks of pericellular coats can help to understand how the coats function.

link (url) [BibTex]

2007


no image
Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference

Schölkopf, B., Platt, J., Hofmann, T.

Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists--interested in theoretical and applied aspects of modeling, simulating, and building neural-like or intelligent systems. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

ei

Web [BibTex]

2007


Web [BibTex]