Header logo is


2018


Thumb xl encyclop med robotics
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schökopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

ei

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]

2010


no image
Markerless tracking of Dynamic 3D Scans of Faces

Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.

In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)

ei

Web [BibTex]

2010


Web [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
JMLR Workshop and Conference Proceedings: Volume 6

Guyon, I., Janzing, D., Schölkopf, B.

pages: 288, MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , February 2010 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Learning Continuous Grasp Affordances by Sensorimotor Exploration

Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.

In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
We develop means of learning and representing object grasp affordances probabilistically. By grasp affordance, we refer to an entity that is able to assess whether a given relative object-gripper configuration will yield a stable grasp. These affordances are represented with grasp densities, continuous probability density functions defined on the space of 3D positions and orientations. Grasp densities are registered with a visual model of the object they characterize. They are exploited by aligning them to a target object using visual pose estimation. Grasp densities are refined through experience: A robot “plays” with an object by executing grasps drawn randomly for the object’s grasp density. The robot then uses the outcomes of these grasps to build a richer density through an importance sampling mechanism. Initial grasp densities, called hypothesis densities, are bootstrapped from grasps collected using a motion capture system, or from grasps generated from the visual model of the object. Refined densities, called empirical densities, represent affordances that have been confirmed through physical experience. The applicability of our method is demonstrated by producing empirical densities for two object with a real robot and its 3-finger hand. Hypothesis densities are created from visual cues and human demonstration.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling

Kober, J., Mohler, B., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamical system-based motor primitives [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal] that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such as Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a skilled human player would be challenged. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for dynamical system-based motor primitives.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside wellstructured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. In this book, we focus on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This chapter provides a general introduction to these issues and briefly presents the contributions of the subsequent chapters to the corresponding research topics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Local GP Model Learning

Nguyen-Tuong, D., Seeger, M., Peters, J.

In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal, Snelson and Ghahramani(2007)]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted proje ction regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Machine Learning Methods for Automatic Image Colorization

Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.

In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)

Abstract
We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a non-uniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data

Bruzzone, L., Persello, C.

In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)

Abstract
This chapter presents an extensive and critical review on the use of kernel methods and in particular of support vector machines (SVMs) in the classification of remote-sensing (RS) data. The chapter recalls the mathematical formulation and the main theoretical concepts related to SVMs, and discusses the motivations at the basis of the use of SVMs in remote sensing. A review on the main applications of SVMs in classification of remote sensing is given, presenting a literature survey on the use of SVMs for the analysis of different kinds of RS images. In addition, the most recent methodological developments related to SVM-based classification techniques in RS are illustrated by focusing on semisupervised, domain adaptation, and context sensitive approaches. Finally, the most promising research directions on SVM in RS are identified and discussed.

ei

Web [BibTex]

Web [BibTex]


no image
Nanohandling robot cells

Fatikow, Sergej, Wich, Thomas, Dahmen, Christian, Jasper, Daniel, Stolle, Christian, Eichhorn, Volkmar, Hagemann, Saskia, Weigel-Jech, Michael

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-31, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Physisorption in porous materials

Hirscher, M., Panella, B.

In Handbook of Hydrogen Storage, pages: 39-62, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Adsorption technologies

Schmitz, B., Hirscher, M.

In Hydrogen and Fuel Cells, pages: 431-445, WILEY-VCH, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Atomic-Force-Microscopy-Based Nanomanipulation Systems

Onal, C. D., Ozcan, O., Sitti, M.

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-15, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]


no image
Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

Martius, G., Herrmann, J. M.

In From Animals to Animats 11, 6226, pages: 50-61, LNCS, Springer, 2010 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2006


no image
Prediction of Protein Function from Networks

Shin, H., Tsuda, K.

In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
In computational biology, it is common to represent domain knowledge using graphs. Frequently there exist multiple graphs for the same set of nodes, representing information from different sources, and no single graph is sufficient to predict class labels of unlabelled nodes reliably. One way to enhance reliability is to integrate multiple graphs, since individual graphs are partly independent and partly complementary to each other for prediction. In this chapter, we describe an algorithm to assign weights to multiple graphs within graph-based semi-supervised learning. Both predicting class labels and searching for weights for combining multiple graphs are formulated into one convex optimization problem. The graph-combining method is applied to functional class prediction of yeast proteins.When compared with individual graphs, the combined graph with optimized weights performs significantly better than any single graph.When compared with the semidefinite programming-based support vector machine (SDP/SVM), it shows comparable accuracy in a remarkably short time. Compared with a combined graph with equal-valued weights, our method could select important graphs without loss of accuracy, which implies the desirable property of integration with selectivity.

ei

Web [BibTex]

2006


Web [BibTex]


no image
Discrete Regularization

Zhou, D., Schölkopf, B.

In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
Many real-world machine learning problems are situated on finite discrete sets, including dimensionality reduction, clustering, and transductive inference. A variety of approaches for learning from finite sets has been proposed from different motivations and for different problems. In most of those approaches, a finite set is modeled as a graph, in which the edges encode pairwise relationships among the objects in the set. Consequently many concepts and methods from graph theory are adopted. In particular, the graph Laplacian is widely used. In this chapter we present a systemic framework for learning from a finite set represented as a graph. We develop discrete analogues of a number of differential operators, and then construct a discrete analogue of classical regularization theory based on those discrete differential operators. The graph Laplacian based approaches are special cases of this general discrete regularization framework. An important thing implied in this framework is that we have a wide choices of regularization on graph in addition to the widely-used graph Laplacian based one.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference

Weiss, Y., Schölkopf, B., Platt, J.

Proceedings of the 19th Annual Conference on Neural Information Processing Systems (NIPS 2005), pages: 1676, MIT Press, Cambridge, MA, USA, 19th Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2005 meeting, held in Vancouver.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Challenges: evaluating predictive uncertainty, visual object classification and recognising textual entailment

Quinonero Candela, J., Dagan, I., Magnini, B., Lauria, F.

Proceedings of the First Pascal Machine Learning Challenges Workshop on Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment (MLCW 2005), pages: 462, Lecture Notes in Computer Science, Springer, Heidelberg, Germany, First Pascal Machine Learning Challenges Workshop (MLCW), 2006 (proceedings)

Abstract
This book constitutes the thoroughly refereed post-proceedings of the First PASCAL (pattern analysis, statistical modelling and computational learning) Machine Learning Challenges Workshop, MLCW 2005, held in Southampton, UK in April 2005. The 25 revised full papers presented were carefully selected during two rounds of reviewing and improvement from about 50 submissions. The papers reflect the concepts of three challenges dealt with in the workshop: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; the second challenge was to recognize objects from a number of visual object classes in realistic scenes; the third challenge of recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Combining a Filter Method with SVMs

Lal, T., Chapelle, O., Schölkopf, B.

In Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

Abstract
Our goal for the competition (feature selection competition NIPS 2003) was to evaluate the usefulness of simple machine learning techniques. We decided to use the correlation criteria as a feature selection method and Support Vector Machines for the classification part. Here we explain how we chose the regularization parameter C of the SVM, how we determined the kernel parameter and how we estimated the number of features used for each data set. All analyzes were carried out on the training sets of the competition data. We choose the data set Arcene as an example to explain the approach step by step. In our view the point of this competition was the construction of a well performing classifier rather than the systematic analysis of a specific approach. This is why our search for the best classifier was only guided by the described methods and that we deviated from the road map at several occasions. All calculations were done with the software Spider [2004].

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Embedded methods

Lal, T., Chapelle, O., Weston, J., Elisseeff, A.

In Feature Extraction: Foundations and Applications, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

Abstract
Embedded methods are a relatively new approach to feature selection. Unlike filter methods, which do not incorporate learning, and wrapper approaches, which can be used with arbitrary classifiers, in embedded methods the features selection part can not be separated from the learning part. Existing embedded methods are reviewed based on a unifying mathematical framework.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Thumb xl 1 4020 4850 5 1
NONLINEAR OPTICAL PROPERTIES OF CHIRAL LIQUIDS Electric-dipolar pseudoscalars in nonlinear optics

Fischer, P., Champagne, B.

In NON-LINEAR OPTICAL PROPERTIES OF MATTER: FROM MOLECULES TO CONDENSED PHASES, 1, pages: 359-381, Challenges and Advances in Computational Chemistry and Physics, 2006 (incollection)

Abstract
We give all overview of linear and nonlinear optical processes that can be specific to chiral molecules in isotropic media. Specifically, we discuss the pseudoscalars that underlie nonlinear optical activity and chiral frequency conversion processes in fluids. We show that nonlinear optical techniques open entirely new ways of exploring chirality: Sum-frequency-generation (SFG) at second-order and BioCARS at fourth-order arise in the electric-dipole approximation and do not require circularly polarized light to detect chiral molecules in solution. Here the frequency conversion in itself is a measure of chirality. This is in contrast to natural optical activity phenomena which are based on the interference of radiation from induced oscillating electric and magnetic dipoles, and which are observed as a differential response to right and left circularly polarized light. We give examples from our SFG experiments in optically active solutions and show how the application of an additional static electric field to sum-frequency generation allows the absolute configuration of the chiral solute to be determined via all electric-dipolar process. Results from ab initio calculations of the SFG pseudoscalar are presented for a number of chiral molecules

pf

[BibTex]

[BibTex]


no image
Approximate nearest neighbor regression in very high dimensions

Vijayakumar, S., DSouza, A., Schaal, S.

In Nearest-Neighbor Methods in Learning and Vision, pages: 103-142, (Editors: Shakhnarovich, G.;Darrell, T.;Indyk, P.), Cambridge, MA: MIT Press, 2006, clmc (inbook)

am

link (url) [BibTex]

link (url) [BibTex]

1996


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

1996


link (url) [BibTex]

1992


no image
Informationssysteme mit CAD (Information systems within CAD)

Schaal, S.

In CAD/CAM Grundlagen, pages: 199-204, (Editors: Milberg, J.), Springer, Buchreihe CIM-TT. Berlin, 1992, clmc (inbook)

am

[BibTex]

1992


[BibTex]