pf
Palagi, S., Walker, D. Q. T., Fischer, P.
Nanoscale robotic agents in biological fluids and tissues
In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)
hi
Kuchenbecker, K. J.
Haptics and Haptic Interfaces
In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)
ev
Ma, L., Stueckler, J., Wu, T., Cremers, D.
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform
arxiv, 2018, arXiv:1808.01834 (techreport)
ei
Schökopf, B.
Maschinelles Lernen: Entwicklung ohne Grenzen?
In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)
slt
Keriven, N., Garreau, D., Poli, I.
NEWMA: a new method for scalable model-free online change-point detection
2018 (techreport)
ei
Wichmann, F. A., Jäkel, F.
Methods in Psychophysics
In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)
ei
Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.
Transfer Learning for BCIs
In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)
ei
Schmidt, M., Kim, D., Sra, S.
Projected Newton-type methods in machine learning
In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)
ei
Kakade, S., von Luxburg, U.
JMLR Workshop and Conference Proceedings Volume 19: COLT 2011
pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)
ei
von Luxburg, U., Schölkopf, B.
Statistical Learning Theory: Models, Concepts, and Results
In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)
ei
Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)
ei
Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.
Non-stationary Correction of Optical Aberrations
(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)
ei
Nickisch, H., Seeger, M.
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint
Max Planck Institute for Biological Cybernetics, March 2011 (techreport)
ei
Langovoy, M., Wittich, O.
Multiple testing, uncertainty and realistic pictures
(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)
ei
Peters, J., Tedrake, R., Roy, N., Morimoto, J.
Robot Learning
In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)
ei
Ihme, K., Zander, TO.
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI
In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)
ei
Borgwardt, KM.
Kernel Methods in Bioinformatics
In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)
ei
Rosas, P., Wichmann, F.
Cue Combination: Beyond Optimality
In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)
ei
Sra, S.
Nonconvex proximal splitting: batch and incremental algorithms
(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)
pi
Xie, H., Onal, C., Régnier, S., Sitti, M.
Automated Control of AFM Based Nanomanipulation
In Atomic Force Microscopy Based Nanorobotics, pages: 237-311, Springer Berlin Heidelberg, 2011 (incollection)
pi
Xie, H., Onal, C., Régnier, S., Sitti, M.
Teleoperation Based AFM Manipulation Control
In Atomic Force Microscopy Based Nanorobotics, pages: 145-235, Springer Berlin Heidelberg, 2011 (incollection)
pi
Xie, H., Onal, C., Régnier, S., Sitti, M.
Descriptions and challenges of AFM based nanorobotic systems
In Atomic Force Microscopy Based Nanorobotics, pages: 13-29, Springer Berlin Heidelberg, 2011 (incollection)
al
Martius, G., Herrmann, J. M.
Tipping the Scales: Guidance and Intrinsically Motivated Behavior
In Advances in Artificial Life, ECAL 2011, pages: 506-513, (Editors: Tom Lenaerts and Mario Giacobini and Hugues Bersini and Paul Bourgine and Marco Dorigo and René Doursat), MIT Press, 2011 (incollection)
ps
Andriluka, M., Sigal, L., Black, M. J.
Benchmark datasets for pose estimation and tracking
In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)
pi
Xie, H., Onal, C., Régnier, S., Sitti, M.
Applications of AFM Based Nanorobotic Systems
In Atomic Force Microscopy Based Nanorobotics, pages: 313-342, Springer Berlin Heidelberg, 2011 (incollection)
ps
Roth, S., Black, M. J.
Steerable random fields for image restoration and inpainting
In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)
pi
Xie, H., Onal, C., Régnier, S., Sitti, M.
Nanomechanics of AFM based nanomanipulation
In Atomic Force Microscopy Based Nanorobotics, pages: 87-143, Springer Berlin Heidelberg, 2011 (incollection)
am
11th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2011), Bled, Slovenia, October 26-28, 2011
IEEE, 2011 (proceedings)
pi
Xie, H., Onal, C., Régnier, S., Sitti, M.
Instrumentation Issues of an AFM Based Nanorobotic System
In Atomic Force Microscopy Based Nanorobotics, pages: 31-86, Springer Berlin Heidelberg, 2011 (incollection)
mms
Schmidt, M., Kim, D., Sra, S.
Projected Newton-type methods in machine learning
In Optimization for Machine Learning, pages: 305-330, MIT Press, Cambridge, MA, USA, 2011 (incollection)
ei
Nickisch, H., Kohli, P., Rother, C.
Learning an Interactive Segmentation System
Max Planck Institute for Biological Cybernetics, December 2009 (techreport)
ei
Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction
(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)
ei
Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution
(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)
ei
Gretton, A., Györfi, L.
Consistent Nonparametric Tests of Independence
(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)
ei
Sra, S., Banerjee, A., Ghosh, J., Dhillon, I.
Text Clustering with Mixture of von Mises-Fisher Distributions
In Text mining: classification, clustering, and applications, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)
ei
Shelton, J., Blaschko, M., Bartels, A.
Semi-supervised subspace analysis of human functional magnetic resonance imaging data
(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)
ei
Tsuda, K.
Data Mining for Biologists
In Biological Data Mining in Protein Interaction Networks, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)
ei
Altun, Y.
Large Margin Methods for Part of Speech Tagging
In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)
ei
Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.
Covariate shift and local learning by distribution matching
In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)
am
Schaal, S.
The SL simulation and real-time control software package
University of Southern California, Los Angeles, CA, 2009, clmc (techreport)
am
Schaal, S.
The SL simulation and real-time control software package
University of Southern California, Los Angeles, CA, 2009, clmc (techreport)
mms
Panella, B., Hirscher, M.
Metal-Organic Frameworks
In Encyclopedia of Electrochemical Power Sources, pages: 493-496, Elsevier, Amsterdam [et al.], 2009 (incollection)
pi
Cheung, E., Aksak, B., Sitti, M.
Biologically Inspired Polymer Microfibrillar Arrays for Mask Sealing
CARNEGIE-MELLON UNIV PITTSBURGH PA, 2009 (techreport)
mms
Hirscher, M.
Carbon Materials
In Encyclopedia of Electrochemical Power Sources, pages: 484-487, Elsevier, Amsterdam [et al.], 2009 (incollection)
ei
Altun, Y., Hofmann, T., Tsochantaridis, I.
Support Vector Machine Learning for Interdependent and Structured Output Spaces
In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
ei
Jegelka, S., Gretton, A.
Brisk Kernel ICA
In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
ei
Chapelle, O.
Training a Support Vector Machine in the Primal
In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)
ei
Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.
Approximation Methods for Gaussian Process Regression
In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
ei
Walder, C., Chapelle, O.
Learning with Transformation Invariant Kernels
(165), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2007 (techreport)
ei
Schölkopf, B., Platt, J., Hofmann, T.
Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference
Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)