Header logo is


2016


Thumb xl smpl
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


no image
Autofocusing-based correction of B0 fluctuation-induced ghosting

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2016 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Distinct adaptation to abrupt and gradual torque perturbations with a multi-joint exoskeleton robot

Oh, Y., Sutanto, G., Mistry, M., Schweighofer, N., Schaal, S.

Abstracts of Neural Control of Movement Conference (NCM 2016), Montego Bay, Jamaica, April 2016 (poster)

am

[BibTex]

[BibTex]


no image
Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)

ei

[BibTex]

[BibTex]


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

ei

pdf [BibTex]

pdf [BibTex]


no image
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

ei

Arxiv [BibTex]

Arxiv [BibTex]


Thumb xl sabteaser
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]


no image
Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Hippocampal neural events predict ongoing brain-wide BOLD activity

Besserve, M., Logothetis, N. K.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Extrapolation and learning equations

Martius, G., Lampert, C. H.

2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)

al

Project Page [BibTex]

Project Page [BibTex]

2014


no image
Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

arXiv preprint, March 2014, clmc (misc)

Abstract
Abstract: Locally weighted regression was created as a nonparametric learning method that is computationally efficient, can learn from very large amounts of data and add data incrementally. An interesting feature of locally weighted regression is that it can work with ...

am pn

Web link (url) [BibTex]

2014


Web link (url) [BibTex]


no image
Fibrillar structures to reduce viscous drag on aerodynamic and hydrodynamic wall surfaces

Castillo, L., Aksak, B., Sitti, M.

March 2014, US Patent App. 14/774,767 (misc)

pi

[BibTex]

[BibTex]


no image
The design of microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

February 2014, US Patent App. 14/766,561 (misc)

pi

[BibTex]

[BibTex]


no image
Dynamical source analysis of hippocampal sharp-wave ripple episodes

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Bernstein Conference, 2014 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
FID-guided retrospective motion correction based on autofocusing

Babayeva, M., Loktyushin, A., Kober, T., Granziera, C., Nickisch, H., Gruetter, R., Krueger, G.

Joint Annual Meeting ISMRM-ESMRMB, Milano, Italy, 2014 (poster)

ei

[BibTex]

[BibTex]


no image
Cluster analysis of sharp-wave ripple field potential signatures in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Computational and Systems Neuroscience Meeting (COSYNE), 2014 (poster)

ei

[BibTex]

[BibTex]

2010


no image
Similarities in resting state and feature-driven activity: Non-parametric evaluation of human fMRI

Shelton, J., Blaschko, M., Gretton, A., Müller, J., Fischer, E., Bartels, A.

NIPS Workshop on Learning and Planning from Batch Time Series Data, December 2010 (poster)

ei

PDF Web [BibTex]

2010


PDF Web [BibTex]


no image
Augmentation of fMRI Data Analysis using Resting State Activity and Semi-supervised Canonical Correlation Analysis

Shelton, JA., Blaschko, MB., Bartels, A.

NIPS Women in Machine Learning Workshop (WiML), December 2010 (poster)

Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment kernel canonical correlation analysis (KCCA) in a semisupervised setting. We evaluate this setting empirically yielding three main results: (i) KCCA tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
High frequency phase-spike synchronization of extracellular signals modulates causal interactions in monkey primary visual cortex

Besserve, M., Murayama, Y., Schölkopf, B., Logothetis, N., Panzeri, S.

40(616.2), 40th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2010 (poster)

Abstract
Functional correlates of Rhythms in the gamma band (30-100Hz) are observed in the mammalian brain with a large variety of functional correlates. Nevertheless, their functional role is still debated. One way to disentangle this issue is to go beyond usual correlation analysis and apply causality measures that quantify the directed interactions between the gamma rhythms and other aspects of neural activity. These measures can be further compared with other aspects of neurophysicological signals to find markers of neural interactions. In a recent study, we analyzed extracellular recordings in the primary visual cortex of 4 anesthetized macaques during the presentation of movie stimuli using a causality measure named Transfer Entropy. We found causal interactions between high frequency gamma rhythms (60-100Hz) recorded in different electrodes, involving in particular their phase, and between the gamma phase and spiking activity quantified by the instantaneous envelope of the MUA band (1-3kHz). Here, we further investigate in the same dataset the meaning of these phase-MUA and phase-phase causal interactions by studying the distribution of phases at multiple recording sites at lags around the occurrence of spiking events. First, we found a sharpening of the gamma phase distribution in one electrode when spikes are occurring in other recording site. This phenomena appeared as a form of phase-spike synchronization and was quantified by an information theoretic measure. We found this measure correlates significantly with phase-MUA causal interactions. Additionally, we quantified in a similar way the interplay between spiking and the phase difference between two recording sites (reflecting the well-know concept of phase synchronization). We found that, depending on the couple of recording site, spiking can correlate either with a phase synchronization or with a desynchronization with respect to the baseline. This effect correlates very well with the phase-phase causality measure. These results provide evidence for high frequency phase-spike synchronization to reflect communication between distant neural populations in V1. Conversely, both phase synchronization or desynchronization may favor neural communication between recording sites. This new result, which contrasts with current hypothesis on the role of phase synchronization, could be interpreted as the presence of inhibitory interactions that are suppressed by desynchronization. Finally, our findings give new insights into the role of gamma rhythms in regulating local computation in the visual cortex.

ei

Web [BibTex]

Web [BibTex]


no image
Attenuation Correction for Whole Body PET/MR: Quantitative Evaluation and Lung Attenuation Estimation with Consistency Information

Bezrukov, I., Hofmann, M., Aschoff, P., Beyer, T., Mantlik, F., Pichler, B., Schölkopf, B.

2010(M13-122), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (poster)

ei

[BibTex]

[BibTex]


no image
PET/MRI: Observation of Non-Isotropic Positron Distribution in High Magnetic Fields and Its Diagnostic Impact

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Schölkopf, B., Pichler, B.

2010 Nuclear Science Symposium and Medical Imaging Conference, 2010(M18-119):1, November 2010 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Probabilistic Assignment of Chemical Shift Data for Semi-Automatic Amino Acid Recognition

Hooge, J.

11(10):30, 11th Conference of Junior Neuroscientists of T{\"u}bingen (NeNa), October 2010 (poster)

Abstract
manner. First the backbone resonances are assigned. This is usually achieved from sequential information provided by three chemical shifts: CA, CB and C’. Once the sequence is solved, the second assignment step takes place. For this purpose, the CA-CB and HA chemical shifts are used as a start point for assignment of the side chain resonances, thus connecting the backbone resonances to their respective side chains. This strategy is unfortunately limited by the size of the protein due to increasing signal overlap and missing signals. Therefore, amino acid recognition is in many cases not possible as the CA-CB chemical shift pattern is not sufficient to discriminate between the 20 amino acids. As a result, the first step of the strategy described above remains tedious and time consuming. The combination of modern NMR techniques with new spectrometers now provide information that was not always accessible in the past, due to sensitivity problems. These experiments can be applied efficiently to measure a protein size up to 45 kDa and furthermore provide a unique combination of sequential carbon spin system information. The assignment process can thus benefit from a maximum knowledge input, containing âallâ backbone and side chain chemical shifts as well as an immediate amino acid recognition from the side chain spin system. We propose to extend the software PASTA (Protein ASsignment by Threshold Accepting) to achieve a general sequential assignment of backbone and side-chain resonances in a semi- to fullautomatic per-residue approach. PASTA will offer the possibility to achieve the sequential assignment using any kind of chemical shifts (carbons and/or protons) that can provide sequential information combined with an amino acid recognition feature based on carbon spin system analysis.

ei

PDF [BibTex]

PDF [BibTex]


no image
Generalizing Demonstrated Actions in Manipulation Tasks

Kroemer, O., Detry, R., Piater, J., Peters, J.

IROS 2010 Workshop on Grasp Planning and Task Learning by Imitation, 2010, pages: 1, October 2010 (poster)

Abstract
Programming-by-demonstration promises to significantly reduce the burden of coding robots to perform new tasks. However, service robots will be presented with a variety of different situations that were not specifically demonstrated to it. In such cases, the robot must autonomously generalize its learned motions to these new situations. We propose a system that can generalize movements to new target locations and even new objects. The former is achieved by using a task-specific coordinate system together with dynamical systems motor primitives. Generalizing actions to new objects is a more complex problem, which we solve by treating it as a continuum-armed bandits problem. Using the bandits framework, we can efficiently optimize the learned action for a specific object. The proposed method was implemented on a real robot and succesfully adapted the grasping action to three different objects. Although we focus on grasping as an example of a task, the proposed methods are much more widely applicable to robot manipulation tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Inhomogeneous Positron Range Effects in High Magnetic Fields might Cause Severe Artefacts in PET/MRI

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Eriksson, L., Pichler, B.

(0305B), 2010 World Molecular Imaging Congress (WMIC), September 2010 (poster)

Abstract
The combination of PET and MRI is an emerging field of current research. It is known that the positron range is shortened in high magnetic fields (MF), leading to an improved resolution in PET images. Interestingly, only the fraction of positron range (PR) orthogonal to the MF is reduced and the fraction along the MF is not affected and yields to a non-isotropic count distribution. We measured the PR effect with PET isotopes like F-18, Cu-64, C-11, N-13 and Ga-68. A piece of paper (1 cm2) was soaked with each isotope and placed in the cFOV of a clinical 3T BrainPET/MR scanner. A polyethylene board (PE) was placed as a positron (β+) stopper with an axial distance of 3 cm from the soaked paper. The area under the peaks of one pixel wide profiles along the z-axis in coronal images was compared. Based on these measurements we confirmed our data in organic tissue. A larynx/trachea and lung of a butchered swine were injected with a mixture of NiSO4 for T1 MRI signals and Ga-68, simulating tumor lesions in the respiratory tract. The trachea/larynx were aligned in 35° to the MF lines and a small mass lesion was inserted to imitate a primary tracheal tumor whereas the larynx was injected submucosally in the lower medial part of the epiglottis. Reconstructed PET data show that the annihilated ratio of β+ at the origin position and in the PE depends on the isotope energy and the direction of the MF. The annihilation ratios of the source and PE are 52.4/47.6 (F-18), 57.5/42.5 (Cu-64), 43.7/56.7 (C-11), 31.1/68.9 (N-13) and 14.9/85.1 (Ga-68). In the swine larynx measurement, an artefact with approximately 39% of the lesion activity formed along MF lines 3cm away from the original injected position (fig.1). The data of the trachea showed two shine artefacts with a symmetric alignment along the MF lines. About 58% of the positrons annihilated at the lesion and 21% formed each artefact. The PR effects areminor in tissue of higher or equal density to water (0.096 cm-1). However, the effect is severe in low density tissue or air and might lead to misinterpretation of clinical data.

ei

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), 30, pages: 69, July 2010 (poster)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients, many of these problems may be addressed by constraining the information loss. In this book chapter, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems. We will also present a real-world applications where a robot employs REPS to learn how to return balls in a game of table tennis.

ei

PDF [BibTex]

PDF [BibTex]


no image
A Maximum Entropy Approach to Semi-supervised Learning

Erkan, A., Altun, Y.

30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), 30, pages: 80, July 2010 (poster)

Abstract
Maximum entropy (MaxEnt) framework has been studied extensively in supervised learning. Here, the goal is to find a distribution p that maximizes an entropy function while enforcing data constraints so that the expected values of some (pre-defined) features with respect to p match their empirical counterparts approximately. Using different entropy measures, different model spaces for p and different approximation criteria for the data constraints yields a family of discriminative supervised learning methods (e.g., logistic regression, conditional random fields, least squares and boosting). This framework is known as the generalized maximum entropy framework. Semi-supervised learning (SSL) has emerged in the last decade as a promising field that combines unlabeled data along with labeled data so as to increase the accuracy and robustness of inference algorithms. However, most SSL algorithms to date have had trade-offs, e.g., in terms of scalability or applicability to multi-categorical data. We extend the generalized MaxEnt framework to develop a family of novel SSL algorithms. Extensive empirical evaluation on benchmark data sets that are widely used in the literature demonstrates the validity and competitiveness of the proposed algorithms.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
The effect of positioning aids on PET quantification following MR-based attenuation correction (AC) in PET/MR imaging

Mantlik, F., Hofmann, M., Kupferschläger, J., Werner, M., Pichler, B., Beyer, T.

Journal of Nuclear Medicine, 51(Supplement 2):1418 , June 2010 (poster)

Abstract
Objectives: We study the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. Methods: Positioning aids cannot be detected with conventional MR sequences. We mimic this effect using PET/CT data (Biograph HiRez16) with the foams removed from CT images prior to using them for CT-AC. PET/CT data were acquired using standard parameters (phantoms/patients): 120/140 kVp, 30/250 mAs, 5 mm slices, OSEM (4i, 8s, 5 mm filter) following CT-AC. First, a uniform 68Ge-cylinder was positioned centrally in the PET/CT and fixed with a vacuum mattress (10 cm thick). Second, the same cylinder was placed in 3 positioning aids from the PET/MR (BrainPET-3T). Third, 5 head/neck patients who were fixed in a vacuum mattress were selected. In all 3 studies PET recon post CT-AC based on measured CT images was used as the reference (mCT-AC). The PET/MR set-up was mimicked by segmenting the foam inserts from the measured CT images and setting their voxel values to -1000 HU (air). PET images were reconstructed using CT-AC with the segmented CT images (sCT-AC). PET images with mCT- and sCT-AC were compared. Results: sCT-AC underestimated PET voxel values in the phantom by 6.7% on average compared to mCT-AC with the vacuum mattress in place. 5% of the PET voxels were underestimated by >=10%. Not accounting for MR positioning aids during AC led to an underestimation of 2.8% following sCT-AC, with 5% of the PET voxels being underestimated by >=7% wrt mCT-AC. Preliminary evaluation of the patient data indicates a slightly higher bias from not accounting for patient positioning aids (mean: -9.1%, 5% percentile: -11.2%). Conclusions: A considerable and regionally variable underestimation of the PET activity following AC is observed when positioning aids are not accounted for. This bias may become relevant in neurological activation or dementia studies with PET/MR

ei

Web [BibTex]

Web [BibTex]


no image
Multi-task Learning for Zero Training Brain-Computer Interfaces

Alamgir, M., Grosse-Wentrup, M., Altun, Y.

4th International BCI Meeting, June 2010 (poster)

Abstract
Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subject-specific calibration data prior to actual use of the BCI for communication. In this work, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process, i.e., with zero training data. In BCIs based on EEG or MEG, the predictive function of a subject's intention is commonly modeled as a linear combination of some features derived from spatial and spectral recordings. The coefficients of this combination correspond to the importance of the features for predicting the intention of the subject. These coefficients are usually learned separately for each subject due to inter-subject variability. Principle feature characteristics, however, are known to remain invariant across subject. For example, it is well known that in motor imagery paradigms spectral power in the mu- and beta frequency ranges (roughly 8-14 Hz and 20-30 Hz, respectively) over sensorimotor areas provides most information on a subject's intention. Based on this assumption, we define the intention prediction function as a combination of subject-invariant and subject-specific models, and propose a machine learning method that infers these models jointly using data from multiple subjects. This framework leads to an out-of-the-box intention predictor, where the subject-invariant model can be employed immediately for a subject with no prior data. We present a computationally efficient method to further improve this BCI to incorporate subject-specific variations as such data becomes available. To overcome the problem of high dimensional feature spaces in this context, we further present a new method for finding the relevance of different recording channels according to actions performed by subjects. Usually, the BCI feature representation is a concatenation of spectral features extracted from different channels. This representation, however, is redundant, as recording channels at different spatial locations typically measure overlapping sources within the brain due to volume conduction. We address this problem by assuming that the relevance of different spectral bands is invariant across channels, while learning different weights for each recording electrode. This framework allows us to significantly reduce the feature space dimensionality without discarding potentially useful information. Furthermore, the resulting out-of-the-box BCI can be adapted to different experimental setups, for example EEG caps with different numbers of channels, as long as there exists a mapping across channels in different setups. We demonstrate the feasibility of our approach on a set of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of ten healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and that combining prior recordings with subject-specific calibration data substantially outperforms using subject-specific data only.

ei

Web [BibTex]


no image
Causal Influence of Gamma Oscillations on Performance in Brain-Computer Interfaces

Grosse-Wentrup, M., Hill, J., Schölkopf, B.

4th International BCI Meeting0, June 2010 (poster)

Abstract
Background and Objective: While machine learning approaches have led to tremendous advances in brain-computer interfaces (BCIs) in recent years (cf. [1]), there still exists a large variation in performance across subjects. Furthermore, a significant proportion of subjects appears incapable of achieving above chance-level classification accuracy [2], which to date includes all subjects in a completely locked-in state that have been trained in BCI control. Understanding the reasons for this variation in performance arguably constitutes one of the most fundamental open questions in research on BCIs. Methods & Results Using a machine learning approach, we derive a trial-wise measure of how well EEG recordings can be classified as either left- or right-hand motor imagery. Specifically, we train a support vector machine (SVM) on log-bandpower features (7-40 Hz) derived from EEG channels after spatial filtering with a surface Laplacian, and then compute the trial-wise distance of the output of the SVM from the separating hyperplane using a cross-validation procedure. We then correlate this trial-wise performance measure, computed on EEG recordings of ten healthy subjects, with log-bandpower in the gamma frequency range (55-85 Hz), and demonstrate that it is positively correlated with frontal- and occipital gamma-power and negatively correlated with centro-parietal gamma-power. This correlation is shown to be highly significant on the group level as well as in six out of ten subjects on the single-subject level. We then utilize the framework for causal inference developed by Pearl, Spirtes and others [3,4] to present evidence that gamma-power is not only correlated with BCI performance but does indeed exert a causal influence on it. Discussion and Conclusions Our results indicate that successful execution of motor imagery, and hence reliable communication by means of a BCI based on motor imagery, requires a volitional shift of gamma-power from centro-parietal to frontal and occipital regions. As such, our results provide the first non-trivial explanation for the variation in BCI performance across and within subjects. As this topographical alteration in gamma-power is likely to correspond to a specific attentional shift, we propose to provide subjects with feedback on their topographical distribution of gamma-power in order to establish the attentional state required for successful execution of motor imagery.

ei

Web [BibTex]


no image
Solving large-scale nonnegative least-squares

Sra, S.

16th Conference of the International Linear Algebra Society (ILAS 2010), 16, pages: 19, June 2010, based on Joint work with Dongmin Kim and Inderjit Dhillon (poster)

Abstract
We study the fundamental problem of nonnegative least squares. This problem was apparently introduced by Lawson and Hanson [1] under the name NNLS. As is evident from its name, NNLS seeks least-squares solutions that are also nonnegative. Owing to its wide-applicability numerous algorithms have been derived for NNLS, beginning from the active-set approach of Lawson and Hanson [1] leading up to the sophisticated interior-point method of Bellavia et al. [2]. We present a new algorithm for NNLS that combines projected subgradients with the non-monotonic gradient descent idea of Barzilai and Borwein [3]. Our resulting algorithm is called BBSG, and we guarantee its convergence by exploiting properties of NNLS in conjunction with projected subgradients. BBSG is surprisingly simple and scales well to large problems. We substantiate our claims by empirically evaluating BBSG and comparing it with established convex solvers and specialized NNLS algorithms. The numerical results suggest that BBSG is a practical method for solving large-scale NNLS problems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Simultaneous PET/MRI for the evaluation of hemato-oncological diseases with lower extremity manifestations

Sauter, A., Horger, M., Boss, A., Kolb, A., Mantlik, F., Kanz, L., Pfannenberg, C., Stegger, L., Claussen, C., Pichler, B.

Journal of Nuclear Medicine, 51(Supplement 2):1001 , June 2010 (poster)

Abstract
Objectives: The study purpose is the evaluation of patients, suffering from hemato-oncological disease with complications at the lower extremities, using simultaneous PET/MRI. Methods: Until now two patients (chronic active graft-versus-host-disease [GvHD], B-non Hodgkin lymphoma [B-NHL]) before and after therapy were examined in a 3-Tesla-BrainPET/MRI hybrid system following F-18-FDG-PET/CT. Simultaneous static PET (1200 sec.) and MRI scans (T1WI, T2WI, post-CA) were acquired. Results: Initial results show the feasibility of using hybrid PET/MRI-technology for musculoskeletal imaging of the lower extremities. Simultaneous PET and MRI could be acquired in diagnostic quality. Before treatment our patient with GvHD had a high fascia and muscle FDG uptake, possibly due to muscle encasement. T2WI and post gadolinium T1WI revealed a fascial thickening and signs of inflammation. After therapy with steroids followed by imatinib the patient’s symptoms improved while, the muscular FDG uptake droped whereas the MRI signal remained unchanged. We assume that fascial elasticity improved during therapy despite persistance of fascial thickening. The examination of the second patient with B-NHL manifestation in the tibia showed a significant signal and uptake decrease in the bone marrow and surrounding lesions in both, MRI and PET after therapy with rituximab. The lack of residual FDG-uptake proved superior to MRI information alone helping for exclusion of vital tumor. Conclusions: Combined PET/MRI is a powerful tool to monitor diseases requiring high soft tissue contrast along with molecular information from the FDG uptake.

ei

Web [BibTex]

Web [BibTex]


no image
Solving large-scale nonnegative least squares using an adaptive non-monotonic method

Sra, S., Kim, D., Dhillon, I.

24th European Conference on Operational Research (EURO 2010), 24, pages: 223, April 2010 (poster)

Abstract
We present an efficient algorithm for large-scale non-negative least-squares (NNLS). We solve NNLS by extending the unconstrained quadratic optimization method of Barzilai and Borwein (BB) to handle nonnegativity constraints. Our approach is simple yet efficient. It differs from other constrained BB variants as: (i) it uses a specific subset of variables for computing BB steps; and (ii) it scales these steps adaptively to ensure convergence. We compare our method with both established convex solvers and specialized NNLS methods, and observe highly competitive empirical performance.

ei

PDF [BibTex]

PDF [BibTex]


no image
Sparse regression via a trust-region proximal method

Kim, D., Sra, S., Dhillon, I.

24th European Conference on Operational Research (EURO 2010), 24, pages: 278, April 2010 (poster)

Abstract
We present a method for sparse regression problems. Our method is based on the nonsmooth trust-region framework that minimizes a sum of smooth convex functions and a nonsmooth convex regularizer. By employing a separable quadratic approximation to the smooth part, the method enables the use of proximity operators, which in turn allow tackling the nonsmooth part efficiently. We illustrate our method by implementing it for three important sparse regression problems. In experiments with synthetic and real-world large-scale data, our method is seen to be competitive, robust, and scalable.

ei

PDF [BibTex]

PDF [BibTex]


no image
PAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis

Seldin, Y., Tishby, N.

Workshop "Foundations and New Trends of PAC Bayesian Learning", 2010, March 2010 (poster)

Abstract
We applied PAC-Bayesian framework to derive gen- eralization bounds for co-clustering1. The analysis yielded regularization terms that were absent in the preceding formulations of this task. The bounds sug- gested that co-clustering should optimize a trade-off between its empirical performance and the mutual in- formation that the cluster variables preserve on row and column indices. Proper regularization enabled us to achieve state-of-the-art results in prediction of the missing ratings in the MovieLens collaborative filtering dataset. In addition a PAC-Bayesian bound for discrete den- sity estimation was derived. We have shown that the PAC-Bayesian bound for classification is a spe- cial case of the PAC-Bayesian bound for discrete den- sity estimation. We further introduced combinatorial priors to PAC-Bayesian analysis. The combinatorial priors are more appropriate for discrete domains, as opposed to Gaussian priors, the latter of which are suitable for continuous domains. It was shown that combinatorial priors lead to regularization terms in the form of mutual information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning the Reward Model of Dialogue POMDPs

Boularias, A., Chinaei, H., Chaib-Draa, B.

NIPS Workshop on Machine Learning for Assistive Technology (MLAT-2010), 2010 (poster)

ei

[BibTex]

[BibTex]


no image
Erste Erfahrungen bei der Beurteilung hämato-onkologischer Krankheitsmanifestationen an den Extremitäten mit einem PET/MRT-Hybridsystem.

Sauter, A., Boss, A., Kolb, A., Mantlik, F., Bethge, W., Kanz, L., Pfannenberg, C., Stegger, L., Pichler, B., Claussen, C., Horger, M.

Thieme Verlag, Stuttgart, Germany, 91. Deutscher R{\"o}ntgenkongress, 2010 (poster)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
\textscLpzRobots: A free and powerful robot simulator

Martius, G., Hesse, F., Güttler, F., Der, R.

\urlhttp://robot.informatik.uni-leipzig.de/software, 2010 (misc)

al

[BibTex]

[BibTex]


no image
Playful Machines: Tutorial

Der, R., Martius, G.

\urlhttp://robot.informatik.uni-leipzig.de/tutorial?lang=en, 2010 (misc)

al

[BibTex]

[BibTex]

2003


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

ei

Web DOI [BibTex]

2003


Web DOI [BibTex]


no image
Phase Information and the Recognition of Natural Images

Braun, D., Wichmann, F., Gegenfurtner, K.

6, pages: 138, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Fourier phase plays an important role in determining image structure. For example, when the phase spectrum of an image showing a ower is swapped with the phase spectrum of an image showing a tank, then we will usually perceive a tank in the resulting image, even though the amplitude spectrum is still that of the ower. Also, when the phases of an image are randomly swapped across frequencies, the resulting image becomes impossible to recognize. Our goal was to evaluate the e ect of phase manipulations in a more quantitative manner. On each trial subjects viewed two images of natural scenes. The subject had to indicate which one of the two images contained an animal. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was uniformly distributed in the interval [;+], where  was varied between 0 degree and 180 degrees. Image pairs were displayed for 100 msec. Subjects were remarkably resistant to the addition of phase noise. Even with [120; 120] degree noise, subjects still were at a level of 75% correct. The introduction of phase noise leads to a reduction of image contrast. Subjects were slightly better than a simple prediction based on this contrast reduction. However, when contrast response functions were measured in the same experimental paradigm, we found that performance in the phase noise experiment was signi cantly lower than that predicted by the corresponding contrast reduction.

ei

Web [BibTex]

Web [BibTex]


no image
Constraints measures and reproduction of style in robot imitation learning

Bakir, GH., Ilg, W., Franz, MO., Giese, M.

6, pages: 70, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning is frequently discussed as a method for generating complex behaviors in robots by imitating human actors. The kinematic and the dynamic properties of humans and robots are typically quite di erent, however. For this reason observed human trajectories cannot be directly transferred to robots, even if their geometry is humanoid. Instead the human trajectory must be approximated by trajectories that can be realized by the robot. During this approximation deviations from the human trajectory may arise that change the style of the executed movement. Alternatively, the style of the movement might be well reproduced, but the imitated trajectory might be suboptimal with respect to di erent constraint measures from robotics control, leading to non-robust behavior. Goal of the presented work is to quantify this trade-o between \imitation quality" and constraint compatibility for the imitation of complex writing movements. In our experiment, we used trajectory data from human writing movements (see the abstract of Ilg et al. in this volume). The human trajectories were mapped onto robot trajectories by minimizing an error measure that integrates constraints that are important for the imitation of movement style and a regularizing constraint that ensures smooth joint trajectories with low velocities. In a rst experiment, both the end-e ector position and the shoulder angle of the robot were optimized in order to achieve good imitation together with accurate control of the end-e ector position. In a second experiment only the end-e ector trajectory was imitated whereas the motion of the elbow joint was determined using the optimal inverse kinematic solution for the robot. For both conditions di erent constraint measures (dexterity and relative jointlimit distances) and a measure for imitation quality were assessed. By controling the weight of the regularization term we can vary continuously between robot behavior optimizing imitation quality, and behavior minimizing joint velocities.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Study of Human Classification using Psychophysics and Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

6, pages: 149, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), Febuary 2003 (poster)

Abstract
We attempt to reach a better understanding of classi cation in humans using both psychophysical and machine learning techniques. In our psychophysical paradigm the stimuli presented to the human subjects are modi ed using machine learning algorithms according to their responses. Frontal views of human faces taken from a processed version of the MPI face database are employed for a gender classi cation task. The processing assures that all heads have same mean intensity, same pixel-surface area and are centered. This processing stage is followed by a smoothing of the database in order to eliminate, as much as possible, scanning artifacts. Principal Component Analysis is used to obtain a low-dimensional representation of the faces in the database. A subject is asked to classify the faces and experimental parameters such as class (i.e. female/male), con dence ratings and reaction times are recorded. A mean classi cation error of 14.5% is measured and, on average, 0.5 males are classi ed as females and 21.3females as males. The mean reaction time for the correctly classi ed faces is 1229 +- 252 [ms] whereas the incorrectly classi ed faces have a mean reaction time of 1769 +- 304 [ms] showing that the reaction times increase with the subject's classi- cation error. Reaction times are also shown to decrease with increasing con dence, both for the correct and incorrect classi cations. Classi cation errors, reaction times and con dence ratings are then correlated to concepts of machine learning such as separating hyperplane obtained when considering Support Vector Machines, Relevance Vector Machines, boosted Prototype and K-means Learners. Elements near the separating hyperplane are found to be classi ed with more errors than those away from it. In addition, the subject's con dence increases when moving away from the hyperplane. A preliminary analysis on the available small number of subjects indicates that K-means classi cation seems to re ect the subject's classi cation behavior best. The above learnersare then used to generate \special" elements, or representations, of the low-dimensional database according to the labels given by the subject. A memory experiment follows where the representations are shown together with faces seen or unseen during the classi cation experiment. This experiment aims to assess the representations by investigating whether some representations, or special elements, are classi ed as \seen before" despite that they never appeared in the classi cation experiment, possibly hinting at their use during human classi cation.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Representation of Complex Movement Sequences Based on Hierarchical Spatio-Temporal Correspondence for Imitation Learning in Robotics

Ilg, W., Bakir, GH., Franz, MO., Giese, M.

6, pages: 74, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning of complex movements has become a popular topic in neuroscience, as well as in robotics. A number of conceptual as well as practical problems are still unsolved. One example is the determination of the aspects of movements which are relevant for imitation. Problems concerning the movement representation are twofold: (1) The movement characteristics of observed movements have to be transferred from the perceptual level to the level of generated actions. (2) Continuous spaces of movements with variable styles have to be approximated based on a limited number of learned example sequences. Therefore, one has to use representation with a high generalisation capability. We present methods for the representation of complex movement sequences that addresses these questions in the context of the imitation learning of writing movements using a robot arm with human-like geometry. For the transfer of complex movements from perception to action we exploit a learning-based method that represents complex action sequences by linear combination of prototypical examples (Ilg and Giese, BMCV 2002). The method of hierarchical spatio-temporal morphable models (HSTMM) decomposes action sequences automatically into movement primitives. These primitives are modeled by linear combinations of a small number of learned example trajectories. The learned spatio-temporal models are suitable for the analysis and synthesis of long action sequences, which consist of movement primitives with varying style parameters. The proposed method is illustrated by imitation learning of complex writing movements. Human trajectories were recorded using a commercial motion capture system (VICON). In the rst step the recorded writing sequences are decomposed into movement primitives. These movement primitives can be analyzed and changed in style by de ning linear combinations of prototypes with di erent linear weight combinations. Our system can imitate writing movements of di erent actors, synthesize new writing styles and can even exaggerate the writing movements of individual actors. Words and writing movements of the robot look very natural, and closely match the natural styles. These preliminary results makes the proposed method promising for further applications in learning-based robotics. In this poster we focus on the acquisition of the movement representation (identi cation and segmentation of movement primitives, generation of new writing styles by spatio-temporal morphing). The transfer of the generated writing movements to the robot considering the given kinematic and dynamic constraints is discussed in Bakir et al (this volume).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Models of contrast transfer as a function of presentation time and spatial frequency.

Wichmann, F.

2003 (poster)

Abstract
Understanding contrast transduction is essential for understanding spatial vision. Using standard 2AFC contrast discrimination experiments conducted using a carefully calibrated display we previously showed that the shape of the threshold versus (pedestal) contrast (TvC) curve changes with presentation time and the performance level defined as threshold (Wichmann, 1999; Wichmann & Henning, 1999). Additional experiments looked at the change of the TvC curve with spatial frequency (Bird, Henning & Wichmann, 2002), and at how to constrain the parameters of models of contrast processing (Wichmann, 2002). Here I report modelling results both across spatial frequency and presentation time. An extensive model-selection exploration was performed using Bayesian confidence regions for the fitted parameters as well as cross-validation methods. Bird, C.M., G.B. Henning and F.A. Wichmann (2002). Contrast discrimination with sinusoidal gratings of different spatial frequency. Journal of the Optical Society of America A, 19, 1267-1273. Wichmann, F.A. (1999). Some aspects of modelling human spatial vision: contrast discrimination. Unpublished doctoral dissertation, The University of Oxford. Wichmann, F.A. & Henning, G.B. (1999). Implications of the Pedestal Effect for Models of Contrast-Processing and Gain-Control. OSA Annual Meeting Program, 62. Wichmann, F.A. (2002). Modelling Contrast Transfer in Spatial Vision [Abstract]. Journal of Vision, 2, 7a.

ei

[BibTex]