Header logo is



Thumb xl toc image patent
Convertor

Fischer, P., Mark, A.

May 2014 (patent)

pf

[BibTex]

[BibTex]


no image
Method and device for blind correction of optical aberrations in a digital image

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

International Patent Application, No. PCT/EP2012/068868, April 2014 (patent)

ei

[BibTex]


no image
Exploring complex diseases with intelligent systems

Borgwardt, K.

2014 (mpi_year_book)

Abstract
Physicians are collecting an ever increasing amount of data describing the health state of their patients. Is new knowledge about diseases hidden in this data, which could lead to better therapies? The field of Machine Learning in Biomedicine is concerned with the development of approaches which help to gain such insights from massive biomedical data.

link (url) [BibTex]


no image
The cellular life-death decision – how mitochondrial membrane proteins can determine cell fate

García-Sáez, Ana J.

2014 (mpi_year_book)

Abstract
Living organisms have a very effective method for eliminating cells that are no longer needed: programmed death. Researchers in the group of Ana García Sáez work with a protein called Bax, a key regulator of apoptosis that creates pores with a flexible diameter inside the outer mitochondrial membrane. This step inevitably triggers the final death of the cell. These insights into the role of important key enzymes in setting off apoptosis could provide useful for developing drugs that can directly influence apoptosis.

link (url) [BibTex]

2013


Thumb xl imgf0006
Human Pose Calculation from Optical Flow Data

Black, M., Loper, M., Romero, J., Zuffi, S.

European Patent Application EP 2843621 , August 2013 (patent)

ps

Google Patents [BibTex]

2013


Google Patents [BibTex]


no image
Perceiving Systems – Computers that see

Gehler, P. V.

2013 (mpi_year_book)

Abstract
Our research goal is to define in a mathematical precise way how visual perception works. We want to describe how intelligent systems understand images. To this end we study probabilistic models and statistical learning. Encoding prior knowledge about the world is complemented with automatic learning from training data. One aspect is being able to identify physical factors in images, such as lighting, geometry, and materials. Furthermore we want to automatically recognize and give names to objects and persons in images and understand the scene as a whole.

link (url) [BibTex]


no image
Being small, being smart

Liu, Na

2013 (mpi_year_book)

Abstract
Metallic nanostructures feature plasmonic resonances which spatially confine light on the nanometer scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm3 or less. We utilize such plasmonic focusing for hydrogen detection at the single particle level, which avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. This concept paves the road towards the observation of single catalytic processes in nanoreactors.

link (url) [BibTex]

link (url) [BibTex]