Header logo is


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

Web [BibTex]

2009


Web [BibTex]


no image
Machine Learning for Brain-Computer Interfaces

Hill, NJ.

Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user‘s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn‘t matter what classifier you use once you‘ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I‘ll highlight some of the interesting problems that remain open for machine-learners.

ei

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y.

NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of "how many clusters are present in the data?", and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering‘s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data

Shelton, JA.

Women in Machine Learning Workshop (WiML), December 2009 (talk)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, KCCA may suffer from small sample effects. We propose to use semi-supervised Laplacian regularization to utilize data that are present in only one modality. This manifold learning approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned and such data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, Laplacian regularization improved performance whereas the semi-supervised variants of KCCA yielded the best performance. We additionally analyze the weights learned by the regression in order to infer brain regions that are important during different types of visual processing.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Event-Related Potentials in Brain-Computer Interfacing

Hill, NJ.

Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

Abstract
An introduction to event-related potentials with specific reference to their use in brain-computer interfacing applications and research.

ei

PDF [BibTex]

PDF [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 software package.

ei

PDF [BibTex]

PDF [BibTex]


no image
Implementing a Signal Processing Filter in BCI2000 Using C++

Hill, NJ., Mellinger, J.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
This tutorial shows how the functionality of the BCI2000 software package can be extended with one‘s own code, using BCI2000‘s C++ API.

ei

PDF [BibTex]

PDF [BibTex]


no image
Consistent Nonparametric Tests of Independence

Gretton, A., Györfi, L.

(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)

Abstract
Three simple and explicit procedures for testing the independence of two multi-dimensional random variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based independence measure. Two kinds of tests are provided. Distribution-free strong consistent tests are derived on the basis of large deviation bounds on the test statistcs: these tests make almost surely no Type I or Type II error after a random sample size. Asymptotically alpha-level tests are obtained from the limiting distribution of the test statistics. For the latter tests, the Type I error converges to a fixed non-zero value alpha, and the Type II error drops to zero, for increasing sample size. All tests reject the null hypothesis of independence if the test statistics become large. The performance of the tests is evaluated experimentally on benchmark data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Motor Primitives for Robotics

Kober, J., Peters, J., Oztop, E.

Advanced Telecommunications Research Center ATR, June 2009 (talk)

Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing the Dynamic Systems Motor primitives originally introduced by Ijspeert et al. (2003), appropriate learning algorithms for a concerted approach of both imitation and reinforcement learning are presented. Using these algorithms new motor skills, i.e., Ball-in-a-Cup, Ball-Paddling and Dart-Throwing, are learned.

ei

[BibTex]

[BibTex]


no image
Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer

Lampert, C.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2009 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Semi-supervised subspace analysis of human functional magnetic resonance imaging data

Shelton, J., Blaschko, M., Bartels, A.

(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)

Abstract
Kernel Canonical Correlation Analysis is a very general technique for subspace learning that incorporates PCA and LDA as special cases. Functional magnetic resonance imaging (fMRI) acquired data is naturally amenable to these techniques as data are well aligned. fMRI data of the human brain is a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single- and multi-variate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

ei

PDF [BibTex]

PDF [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)Ñindeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsÑthe heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

am

link (url) [BibTex]

link (url) [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)â??indeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsâ??the heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biologically Inspired Polymer Microfibrillar Arrays for Mask Sealing

Cheung, E., Aksak, B., Sitti, M.

CARNEGIE-MELLON UNIV PITTSBURGH PA, 2009 (techreport)

pi

[BibTex]

[BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

ei

[BibTex]

[BibTex]


no image
Policy Learning for Robotics

Peters, J.

14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Hilbert Space Representations of Probability Distributions

Gretton, A.

2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

Abstract
Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Regression with Intervals

Kashima, H., Yamazaki, K., Saigo, H., Inokuchi, A.

International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

ei

Web [BibTex]

Web [BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Brady, M., Schölkopf, B., Pichler, B.

Joint Molecular Imaging Conference, September 2007 (talk)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning with Transformation Invariant Kernels

Walder, C., Chapelle, O.

(165), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2007 (techreport)

Abstract
Abstract. This paper considers kernels invariant to translation, rotation and dilation. We show that no non-trivial positive definite (p.d.) kernels exist which are radial and dilation invariant, only conditionally positive definite (c.p.d.) ones. Accordingly, we discuss the c.p.d. case and provide some novel analysis, including an elementary derivation of a c.p.d. representer theorem. On the practical side, we give a support vector machine (s.v.m.) algorithm for arbitrary c.p.d. kernels. For the thin-plate kernel this leads to a classifier with only one parameter (the amount of regularisation), which we demonstrate to be as effective as an s.v.m. with the Gaussian kernel, even though the Gaussian involves a second parameter (the length scale).

ei

PDF [BibTex]

PDF [BibTex]


no image
Scalable Semidefinite Programming using Convex Perturbations

Kulis, B., Sra, S., Jegelka, S.

(TR-07-47), University of Texas, Austin, TX, USA, September 2007 (techreport)

Abstract
Several important machine learning problems can be modeled and solved via semidefinite programs. Often, researchers invoke off-the-shelf software for the associated optimization, which can be inappropriate for many applications due to computational and storage requirements. In this paper, we introduce the use of convex perturbations for semidefinite programs (SDPs). Using a particular perturbation function, we arrive at an algorithm for SDPs that has several advantages over existing techniques: a) it is simple, requiring only a few lines of MATLAB, b) it is a first-order method which makes it scalable, c) it can easily exploit the structure of a particular SDP to gain efficiency (e.g., when the constraint matrices are low-rank). We demonstrate on several machine learning applications that the proposed algorithm is effective in finding fast approximations to large-scale SDPs.

ei

PDF [BibTex]

PDF [BibTex]


no image
Bayesian methods for NMR structure determination

Habeck, M.

29th Annual Discussion Meeting: Magnetic Resonance in Biophysical Chemistry, September 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Sparse Multiscale Gaussian Process Regression

Walder, C., Kim, K., Schölkopf, B.

(162), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their computations on a set of m basis functions that are the covariance function of the g.p. with one of its two inputs fixed. We generalise this for the case of Gaussian covariance function, by basing our computations on m Gaussian basis functions with arbitrary diagonal covariance matrices (or length scales). For a fixed number of basis functions and any given criteria, this additional flexibility permits approximations no worse and typically better than was previously possible. Although we focus on g.p. regression, the central idea is applicable to all kernel based algorithms, such as the support vector machine. We perform gradient based optimisation of the marginal likelihood, which costs O(m2n) time where n is the number of data points, and compare the method to various other sparse g.p. methods. Our approach outperforms the other methods, particularly for the case of very few basis functions, i.e. a very high sparsity ratio.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Subwindow Search for Object Localization

Blaschko, M., Hofmann, T., Lampert, C.

(164), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Recent years have seen huge advances in object recognition from images. Recognition rates beyond 95% are the rule rather than the exception on many datasets. However, most state-of-the-art methods can only decide if an object is present or not. They are not able to provide information on the object location or extent within in the image. We report on a simple yet powerful scheme that extends many existing recognition methods to also perform localization of object bounding boxes. This is achieved by maximizing the classification score over all possible subrectangles in the image. Despite the impression that this would be computationally intractable, we show that in many situations efficient algorithms exist which solve a generalized maximum subrectangle problem. We show how our method is applicable to a variety object detection frameworks and demonstrate its performance by applying it to the popular bag of visual words model, achieving competitive results on the PASCAL VOC 2006 dataset.

ei

PDF [BibTex]

PDF [BibTex]


no image
Thinking Out Loud: Research and Development of Brain Computer Interfaces

Hill, NJ.

Invited keynote talk at the Max Planck Society‘s PhDNet Workshop., July 2007 (talk)

Abstract
My principal interest is in applying machine-learning methods to the development of Brain-Computer Interfaces (BCI). This involves the classification of a user‘s intentions or mental states, or regression against some continuous intentional control signal, using brain signals obtained for example by EEG, ECoG or MEG. The long-term aim is to develop systems that a completely paralysed person (such as someone suffering from advanced Amyotrophic Lateral Sclerosis) could use to communicate. Such systems have the potential to improve the lives of many people who would be otherwise completely unable to communicate, but they are still very much in the research and development stages.

ei

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Process Mixtures of Factor Analysers

Görür, D., Rasmussen, C.

Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

Abstract
Mixture of factor analysers (MFA) is a well-known model that combines the dimensionality reduction technique of Factor Analysis (FA) with mixture modeling. The key issue in MFA is deciding on the latent dimension and the number of mixture components to be used. The Bayesian treatment of MFA has been considered by Beal and Ghahramani (2000) using variational approximation and by Fokoué and Titterington (2003) using birth-and –death Markov chain Monte Carlo (MCMC). Here, we present the nonparametric MFA model utilizing a Dirichlet process (DP) prior on the component parameters (that is, the factor loading matrix and the mean vector of each component) and describe an MCMC scheme for inference. The clustering property of the DP provides automatic selection of the number of mixture components. The latent dimensionality of each component is inferred by automatic relevance determination (ARD). Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging clustering problem. We apply our model for clustering the waveforms recorded from the cortex of a macaque monkey.

ei

Web [BibTex]

Web [BibTex]


no image
New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams

Hill, N., Raths, C.

Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

Abstract
When considering Brain-Computer Interface (BCI) development for patients in the most severely paralysed states, there is considerable motivation to move away from BCI systems based on either motor cortex activity, or on visual stimuli. Together these account for most of current BCI research. I present the results of our recent exploration of new auditory- and tactile-stimulus-driven BCIs. The talk includes a tutorial on the construction and interpretation of classifiers which extract spatio-temporal features from event-related potential data. The effects and implications of whitening are discussed, and preliminary results on the effectiveness of a low-rank constraint (Tomioka and Aihara 2007) are shown.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Towards Motor Skill Learning in Robotics

Peters, J.

Interactive Robot Learning - RSS workshop, June 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Transductive Support Vector Machines for Structured Variables

Zien, A., Brefeld, U., Scheffer, T.

International Conference on Machine Learning (ICML), June 2007 (talk)

Abstract
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.

ei

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Impact of target-to-target interval on classification performance in the P300 speller

Martens, S., Hill, J., Farquhar, J., Schölkopf, B.

Scientific Meeting "Applied Neuroscience for Healthy Brain Function", May 2007 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

(163), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, May 2007 (techreport)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

ei

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

Chiappa, S., Barber, D.

(161), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, March 2007 (techreport)

Abstract
We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models in order to (semi) automatically determine an appropriate number of components in the mixture, and to additionally bias the components to a parsimonious parameterization. The resulting models are formally intractable and to deal with this we describe a deterministic approximation based on a novel implementation of Variational Bayes.

ei

PDF [BibTex]

PDF [BibTex]


no image
Automatic 3D Face Reconstruction from Single Images or Video

Breuer, P., Kim, K., Kienzle, W., Blanz, V., Schölkopf, B.

(160), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2007 (techreport)

Abstract
This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are detected using a novel regression-and classification-based approach, and probabilistically plausible configurations of features are selected to produce a list of candidates for several facial feature positions. In the next step, the configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a combination of linear projections. Finally, the feature points initialize a model-fitting procedure of the Morphable Model. The result is a high-resolution 3D surface model.

ei

PDF [BibTex]

PDF [BibTex]


no image
New Margin- and Evidence-Based Approaches for EEG Signal Classification

Hill, N., Farquhar, J.

Invited talk at the FaSor Jahressymposium, February 2007 (talk)

ei

PDF [BibTex]

PDF [BibTex]