Header logo is


2017


no image
Editorial for the Special Issue on Microdevices and Microsystems for Cell Manipulation

Hu, W., Ohta, A. T.

8, Multidisciplinary Digital Publishing Institute, September 2017 (misc)

pi

DOI [BibTex]

2017


DOI [BibTex]


Thumb xl full outfit
Physical and Behavioral Factors Improve Robot Hug Quality

Block, A. E., Kuchenbecker, K. J.

Workshop Paper (2 pages) presented at the RO-MAN Workshop on Social Interaction and Multimodal Expression for Socially Intelligent Robots, Lisbon, Portugal, August 2017 (misc)

Abstract
A hug is one of the most basic ways humans can express affection. As hugs are so common, a natural progression of robot development is to have robots one day hug humans as seamlessly as these intimate human-human interactions occur. This project’s purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a warm, soft, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot char- acteristics and nine randomly ordered trials with varied hug pressure and duration. We found that people prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl bodytalk
Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Ramirez, M. Q., Black, M., Zuffi, S., O’Toole, A., Hill, M. Q., Hahn, C. A.

August 2017, Application PCT/EP2017/051954 (misc)

Abstract
A method for generating a body shape, comprising the steps: - receiving one or more linguistic descriptors related to the body shape; - retrieving an association between the one or more linguistic descriptors and a body shape; and - generating the body shape, based on the association.

ps

Google Patents [BibTex]

Google Patents [BibTex]


no image
Physically Interactive Exercise Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Proton Pack: Visuo-Haptic Surface Data Recording

Burka, A., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Teaching a Robot to Collaborate with a Human Via Haptic Teleoperation

Hu, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl full outfit
How Should Robots Hug?

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
An Interactive Augmented-Reality Video Training Platform for the da Vinci Surgical System

Carlson, J., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the ICRA Workshop on C4 Surgical Robots, Singapore, May 2017 (misc)

Abstract
Teleoperated surgical robots such as the Intuitive da Vinci Surgical System facilitate minimally invasive surgeries, which decrease risk to patients. However, these systems can be difficult to learn, and existing training curricula on surgical simulators do not offer students the realistic experience of a full operation. This paper presents an augmented-reality video training platform for the da Vinci that will allow trainees to rehearse any surgery recorded by an expert. While the trainee operates a da Vinci in free space, they see their own instruments overlaid on the expert video. Tools are identified in the source videos via color segmentation and kernelized correlation filter tracking, and their depth is calculated from the da Vinci’s stereoscopic video feed. The user tries to follow the expert’s movements, and if any of their tools venture too far away, the system provides instantaneous visual feedback and pauses to allow the user to correct their motion. The trainee can also rewind the expert video by bringing either da Vinci tool very close to the camera. This combined and augmented video provides the user with an immersive and interactive training experience.

hi

[BibTex]

[BibTex]


Thumb xl fig1
Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids

Palagi, S., (Walker) Schamel, D., Qiu, T., Fischer, P.

In Microbiorobotics, pages: 133 - 162, 8, Micro and Nano Technologies, Second edition, Elsevier, Boston, March 2017 (incollection)

Abstract
Swimming microorganisms are a source of inspiration for small scale robots that are intended to operate in fluidic environments including complex biomedical fluids. Nature has devised swimming strategies that are effective at small scales and at low Reynolds number. These include the rotary corkscrew motion that, for instance, propels a flagellated bacterial cell, as well as the asymmetric beat of appendages that sperm cells or ciliated protozoa use to move through fluids. These mechanisms can overcome the reciprocity that governs the hydrodynamics at small scale. The complex molecular structure of biologically important fluids presents an additional challenge for the effective propulsion of microrobots. In this chapter it is shown how physical and chemical approaches are essential in realizing engineered abiotic micro- and nanorobots that can move in biomedically important environments. Interestingly, we also describe a microswimmer that is effective in biological viscoelastic fluids that does not have a natural analogue.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hand-Clapping Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, March 2017 (misc)

Abstract
Robots that work alongside humans might be more effective if they could forge a strong social bond with their human partners. Hand-clapping games and other forms of rhythmic social-physical interaction may foster human-robot teamwork, but the design of such interactions has scarcely been explored. At the HRI 2017 conference, we will showcase several such interactions taken from our recent work with the Rethink Robotics Baxter Research Robot, including tempo-matching, Simon says, and Pat-a-cake-like games. We believe conference attendees will be both entertained and intrigued by this novel demonstration of social-physical HRI.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Automatic OSATS Rating of Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 31(Supplement 1):S28, Extended abstract presented as a podium presentation at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Springer, Houston, USA, March 2017 (misc)

Abstract
Introduction: Minimally invasive surgery has revolutionized surgical practice, but challenges remain. Trainees must acquire complex technical skills while minimizing patient risk, and surgeons must maintain their skills for rare procedures. These challenges are magnified in pediatric surgery due to the smaller spaces, finer tissue, and relative dearth of both inanimate and virtual simulators. To build technical expertise, trainees need opportunities for deliberate practice with specific performance feedback, which is typically provided via tedious human grading. This study aimed to validate a novel motion-tracking system and machine learning algorithm for automatically evaluating trainee performance on a pediatric laparoscopic suturing task using a 1–5 OSATS Overall Skill rating. Methods: Subjects (n=14) ranging from medical students to fellows per- formed one or two trials of an intracorporeal suturing task in a custom pediatric laparoscopy training box (Fig. 1) after watching a video of ideal performance by an expert. The position and orientation of the tools and endoscope were recorded over time using Ascension trakSTAR magnetic motion-tracking sensors, and both instrument grasp angles were recorded over time using flex sensors on the handles. The 27 trials were video-recorded and scored on the OSATS scale by a senior fellow; ratings ranged from 1 to 4. The raw motion data from each trial was processed to calculate over 200 preliminary motion parameters. Regularized least-squares regression (LASSO) was used to identify the most predictive parameters for inclusion in a regression tree. Model performance was evaluated by leave-one-subject-out cross validation, wherein the automatic scores given to each subject’s trials (by a model trained on all other data) are compared to the corresponding human rater scores. Results: The best-performing LASSO algorithm identified 14 predictive parameters for inclusion in the regression tree, including completion time, linear path length, angular path length, angular acceleration, grasp velocity, and grasp acceleration. The final model’s raw output showed a strong positive correlation of 0.87 with the reviewer-generated scores, and rounding the output to the nearest integer yielded a leave-one-subject-out cross-validation accuracy of 77.8%. Results are summarized in the confusion matrix (Table 1). Conclusions: Our novel motion-tracking system and regression model automatically gave previously unseen trials overall skill scores that closely match scores from an expert human rater. With additional data and further development, this system may enable creation of a motion-based training platform for pediatric laparoscopic surgery and could yield insights into the fundamental components of surgical skill.

hi

[BibTex]

[BibTex]


no image
How Much Haptic Surface Data is Enough?

Burka, A., Kuchenbecker, K. J.

Workshop paper (5 pages) presented at the AAAI Spring Symposium on Interactive Multi-Sensory Object Perception for Embodied Agents, Stanford, USA, March 2017 (misc)

Abstract
The Proton Pack is a portable visuo-haptic surface interaction recording device that will be used to collect a vast multimodal dataset, intended for robots to use as part of an approach to understanding the world around them. In order to collect a useful dataset, we want to pick a suitable interaction duration for each surface, noting the tradeoff between data collection resources and completeness of data. One interesting approach frames the data collection process as an online learning problem, building an incremental surface model and using that model to decide when there is enough data. Here we examine how to do such online surface modeling and when to stop collecting data, using kinetic friction as a first domain in which to apply online modeling.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

Project Page [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

ps

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking

Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.

In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Statistical Asymmetries Between Cause and Effect

Janzing, D.

In Time in Physics, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

ps

[BibTex]

[BibTex]


no image
Momentum-Centered Control of Contact Interactions

Righetti, L., Herzog, A.

In Geometric and Numerical Foundations of Movements, 117, pages: 339-359, Springer Tracts in Advanced Robotics, Springer, Cham, 2017 (incollection)

mg

link (url) [BibTex]

link (url) [BibTex]

2016


Thumb xl smpl
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


Thumb xl screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P. F., Prescott, T. J., Bohg, J., Engel, A. K., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

am

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


Thumb xl looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

am

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


no image
Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)

ei

[BibTex]

[BibTex]


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

ei

pdf [BibTex]

pdf [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

ei

[BibTex]

[BibTex]


Thumb xl sabteaser
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Locally Weighted Regression for Control

Ting, J., Meier, F., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Extrapolation and learning equations

Martius, G., Lampert, C. H.

2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)

al

Project Page [BibTex]

Project Page [BibTex]

2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]

2007


no image
Support Vector Machine Learning for Interdependent and Structured Output Spaces

Altun, Y., Hofmann, T., Tsochantaridis, I.

In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

Web [BibTex]

2007


Web [BibTex]


no image
Brisk Kernel ICA

Jegelka, S., Gretton, A.

In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Recent approaches to independent component analysis have used kernel independence measures to obtain very good performance in ICA, particularly in areas where classical methods experience difficulty (for instance, sources with near-zero kurtosis). In this chapter, we compare two efficient extensions of these methods for large-scale problems: random subsampling of entries in the Gram matrices used in defining the independence measures, and incomplete Cholesky decomposition of these matrices. We derive closed-form, efficiently computable approximations for the gradients of these measures, and compare their performance on ICA using both artificial and music data. We show that kernel ICA can scale up to much larger problems than yet attempted, and that incomplete Cholesky decomposition performs better than random sampling.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason to ignore this possibility. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approximation Methods for Gaussian Process Regression

Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.

In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
A wealth of computationally efficient approximation methods for Gaussian process regression have been recently proposed. We give a unifying overview of sparse approximations, following Quiñonero-Candela and Rasmussen (2005), and a brief review of approximate matrix-vector multiplication methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In Large Scale Kernel Machines, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how nonconvexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals

Hill, N., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., Elger, C., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

PDF Web [BibTex]

PDF Web [BibTex]