Header logo is


2012


no image
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

December 2012, US Patent App. 14/368,079 (misc)

pi

[BibTex]

2012



no image
Dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

December 2012, US Patent App. 13/533,386 (misc)

pi

[BibTex]

[BibTex]


no image
Methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

June 2012, US Patent 8,206,631 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2012, US Patent App. 13/429,621 (misc)

pi

[BibTex]

[BibTex]


no image
Brain-computer interfaces – a novel type of communication

Grosse-Wentrup, M.

2012 (mpi_year_book)

Abstract
Brain-computer interfaces (BCIs) provide a new means of communication that does not rely on volitional muscle control. This may provide the capability to locked-in patients, e.g., those suffering from amyotrophic lateral sclerosis, to maintain interactions with their environment. Besides providing communication capabilities to locked-in patients, BCIs may further prove to have a beneficial impact on stroke rehabilitation. In this article, the state-of-the-art of BCIs is reviewed and current research questions are discussed.

link (url) [BibTex]


no image
From artificial flagella to medical microbots – the start of a "phantastic voyage"

Fischer, P.

2012 (mpi_year_book)

Abstract
There have been numerous speculations in scientific publications and the popular media about wirelessly controlled microrobots (microbots) navigating the human body. Such micro-agents could revolutionize minimally invasive medical procedures. Using physical vapor deposition we grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales.

link (url) [BibTex]

2011


no image
Preparation of high-efficiency nanostructures of crystalline silicon at low temperatures, as catalyzed by metals: The decisive role of interface thermodynamics

Wang, Zumin, Jeurgens, Lars P. H., Mittemeijer, Eric J.

2011 (mpi_year_book)

Abstract
Metals may help to convert semiconductors from a disordered (amorphous) to an ordered (crystalline) form at low temperatures. A general, quantitative model description has been developed on the basis of interface thermodynamics, which provides fundamental understanding of such so-called metal-induced crystallization (MIC) of amorphous semiconductors. This fundamental understanding can allow the low-temperature (< 200 ºC) manufacturing of high-efficiency solar cells and crystalline-Si-based nanostructures on cheap and flexible substrates such as glasses, plastics and possibly even papers.

link (url) [BibTex]


no image
The sweet coat of living cells – from supramolecular organization and dynamics to biological function

Richter, Ralf

2011 (mpi_year_book)

Abstract
Many biological cells endow themselves with a sugar-rich coat that plays a key role in the protection of the cell and in structuring and communicating with its environment. An outstanding property of these pericellular coats is their dynamic self-organization into strongly hydrated and gel-like meshworks. Tailor-made model systems that are constructed from the molecular building blocks of pericellular coats can help to understand how the coats function.

link (url) [BibTex]

2010


no image
\textscLpzRobots: A free and powerful robot simulator

Martius, G., Hesse, F., Güttler, F., Der, R.

\urlhttp://robot.informatik.uni-leipzig.de/software, 2010 (misc)

al

[BibTex]

2010


[BibTex]


no image
Playful Machines: Tutorial

Der, R., Martius, G.

\urlhttp://robot.informatik.uni-leipzig.de/tutorial?lang=en, 2010 (misc)

al

[BibTex]

[BibTex]