Header logo is


2018


Thumb xl encyclop med robotics
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schökopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

ei

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]

2013


no image
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

ei

PDF DOI [BibTex]

2013


PDF DOI [BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

ei

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Semi-supervised learning in causal and anticausal settings

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

ei

[BibTex]

[BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

ei

[BibTex]

[BibTex]


no image
Behavior as broken symmetry in embodied self-organizing robots

Der, R., Martius, G.

In Advances in Artificial Life, ECAL 2013, pages: 601-608, MIT Press, 2013 (incollection)

al

[BibTex]

[BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


Thumb xl houghforest
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

ps

code Project Page [BibTex]

code Project Page [BibTex]

2009


no image
Clinical PET/MRI-System and Its Applications with MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Schlemmer, H., Claussen, C., Pichler, B.

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), 2009, pages: 1, October 2009 (poster)

Abstract
Clinical PET/MRI is an emerging new hybrid imaging modality. In addition to provide an unique possibility for multifunctional imaging with temporally and spatially matched data, it also provides anatomical information that can also be used for attenuation correction with no radiation exposure to the subjects. A plus of combined compared to sequential PET and MR imaging is the reduction of total scan time. Here we present our initial experience with a hybrid brain PET/MRI system. Due to the ethical approval patient scans could only be performed after a diagnostic PET/CT. We estimate that in approximately 50% of the cases PET/MRI was of superior diagnostic value compared to PET/CT and was able to provide additional information, such as DTI, spectroscopy and Time Of Flight (TOF) angiography. Here we present 3 patient cases in oncology, a retropharyngeal carcinoma in neurooncology, a relapsing meningioma and in neurology a pharyngeal carcinoma in addition to an infraction of the right hemisphere. For quantitative PET imaging attenuation correction is obligatory. In current PET/MRI setup we used our MRI based atlas method for calculating the mu-map for attenuation correction. MR-based attenuation correction accuracy was quantitatively compared to CT-based PET attenuation correction. Extensive studies to assess potential mutual interferences between PET and MR imaging modalities as well as NEMA measurements have been performed. The first patient studies as well as the phantom tests clearly demonstrated the overall good imaging performance of this first human PET/MRI system. Ongoing work concentrates on advanced normalization and reconstruction methods incorporating count-rate based algorithms.

ei

Web [BibTex]

2009


Web [BibTex]


no image
A flowering-time gene network model for association analysis in Arabidopsis thaliana

Klotzbücher, K., Kobayashi, Y., Shervashidze, N., Borgwardt, K., Weigel, D.

2009(39):95-96, German Conference on Bioinformatics (GCB '09), September 2009 (poster)

Abstract
In our project we want to determine a set of single nucleotide polymorphisms (SNPs), which have a major effect on the flowering time of Arabidopsis thaliana. Instead of performing a genome-wide association study on all SNPs in the genome of Arabidopsis thaliana, we examine the subset of SNPs from the flowering-time gene network model. We are interested in how the results of the association study vary when using only the ascertained subset of SNPs from the flowering network model, and when additionally using the information encoded by the structure of the network model. The network model is compiled from the literature by manual analysis and contains genes which have been found to affect the flowering time of Arabidopsis thaliana [Far+08; KW07]. The genes in this model are annotated with the SNPs that are located in these genes, or in near proximity to them. In a baseline comparison between the subset of SNPs from the graph and the set of all SNPs, we omit the structural information and calculate the correlation between the individual SNPs and the flowering time phenotype by use of statistical methods. Through this we can determine the subset of SNPs with the highest correlation to the flowering time. In order to further refine this subset, we include the additional information provided by the network structure by conducting a graph-based feature pre-selection. In the further course of this project we want to validate and examine the resulting set of SNPs and their corresponding genes with experimental methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Initial Data from a first PET/MRI-System and its Applications in Clinical Studies Using MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Judenhofer, M., Schlemmer, H., Claussen, C., Pichler, B.

2009 World Molecular Imaging Congress, 2009, pages: 1200, September 2009 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
A High-Speed Object Tracker from Off-the-Shelf Components

Lampert, C., Peters, J.

First IEEE Workshop on Computer Vision for Humanoid Robots in Real Environments at ICCV 2009, 1, pages: 1, September 2009 (poster)

Abstract
We introduce RTblob, an open-source real-time vision system for 3D object detection that achieves over 200 Hz tracking speed with only off-the-shelf hardware component. It allows fast and accurate tracking of colored objects in 3D without expensive and often custom-built hardware, instead making use of the PC graphics cards for the necessary image processing operations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Estimating Critical Stimulus Features from Psychophysical Data: The Decision-Image Technique Applied to Human Faces

Macke, J., Wichmann, F.

Journal of Vision, 9(8):31, 9th Annual Meeting of the Vision Sciences Society (VSS), August 2009 (poster)

Abstract
One of the main challenges in the sensory sciences is to identify the stimulus features on which the sensory systems base their computations: they are a pre-requisite for computational models of perception. We describe a technique---decision-images--- for extracting critical stimulus features based on logistic regression. Rather than embedding the stimuli in noise, as is done in classification image analysis, we want to infer the important features directly from physically heterogeneous stimuli. A Decision-image not only defines the critical region-of-interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision-images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face discrimination experiment. We show that decision-images are able to predict human responses not only in terms of overall percent correct but are able to predict, for individual observers, the probabilities with which individual faces are (mis-) classified. We then test the predictions of the models using optimized stimuli. Finally, we discuss possible generalizations of the approach and its relationships with other models.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Semi-supervised Analysis of Human fMRI Data

Shelton, JA., Blaschko, MB., Lampert, CH., Bartels, A.

Berlin Brain Computer Interface Workshop on Advances in Neurotechnology, 2009, pages: 1, July 2009 (poster)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, CCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, CCA may suffer from small sample effects. We propose to use semisupervised Laplacian regularization to utilize data that are present in only one modality. This approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned. fMRI data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of CCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of CCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Text Clustering with Mixture of von Mises-Fisher Distributions

Sra, S., Banerjee, A., Ghosh, J., Dhillon, I.

In Text mining: classification, clustering, and applications, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Data Mining for Biologists

Tsuda, K.

In Biological Data Mining in Protein Interaction Networks, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

Abstract
In this tutorial chapter, we review basics about frequent pattern mining algorithms, including itemset mining, association rule mining and graph mining. These algorithms can find frequently appearing substructures in discrete data. They can discover structural motifs, for example, from mutation data, protein structures and chemical compounds. As they have been primarily used for business data, biological applications are not so common yet, but their potential impact would be large. Recent advances in computers including multicore machines and ever increasing memory capacity support the application of such methods to larger datasets. We explain technical aspects of the algorithms, but do not go into details. Current biological applications are summarized and possible future directions are given.

ei

Web [BibTex]

Web [BibTex]


no image
Optimization of k-Space Trajectories by Bayesian Experimental Design

Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.

17(2627), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
MR image reconstruction from undersampled k-space can be improved by nonlinear denoising estimators since they incorporate statistical prior knowledge about image sparsity. Reconstruction quality depends crucially on the undersampling design (k-space trajectory), in a manner complicated by the nonlinear and signal-dependent characteristics of these methods. We propose an algorithm to assess and optimize k-space trajectories for sparse MRI reconstruction, based on Bayesian experimental design, which is scaled up to full MR images by a novel variational relaxation to iteratively reweighted FFT or gridding computations. Designs are built sequentially by adding phase encodes predicted to be most informative, given the combination of previous measurements with image prior information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
MR-Based Attenuation Correction for PET/MR

Hofmann, M., Steinke, F., Bezrukov, I., Kolb, A., Aschoff, P., Lichy, M., Erb, M., Nägele, T., Brady, M., Schölkopf, B., Pichler, B.

17(260), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
There has recently been a growing interest in combining PET and MR. Attenuation correction (AC), which accounts for radiation attenuation properties of the tissue, is mandatory for quantitative PET. In the case of PET/MR the attenuation map needs to be determined from the MR image. This is intrinsically difficult as MR intensities are not related to the electron density information of the attenuation map. Using ultra-short echo (UTE) acquisition, atlas registration and machine learning, we present methods that allow prediction of the attenuation map based on the MR image both for brain and whole body imaging.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Metal-Organic Frameworks

Panella, B., Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 493-496, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]


no image
Carbon Materials

Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 484-487, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]

2004


no image
S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, NJ., Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

ei

Web [BibTex]

2004


Web [BibTex]


no image
Distributed Command Execution

Stark, S., Berlin, M.

In BSD Hacks: 100 industrial-strength tips & tools, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Abstract
Often you want to execute a command not only on one computer, but on several at once. For example, you might want to report the current statistics on a group of managed servers or update all of your web servers at once.

ei

[BibTex]

[BibTex]


no image
Human Classification Behaviour Revisited by Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

7, pages: 134, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), Febuary 2004 (poster)

Abstract
We attempt to understand visual classication in humans using both psychophysical and machine learning techniques. Frontal views of human faces were used for a gender classication task. Human subjects classied the faces and their gender judgment, reaction time (RT) and condence rating (CR) were recorded for each face. RTs are longer for incorrect answers than for correct ones, high CRs are correlated with low classication errors and RTs decrease as the CRs increase. This results suggest that patterns difcult to classify need more computation by the brain than patterns easy to classify. Hyperplane learning algorithms such as Support Vector Machines (SVM), Relevance Vector Machines (RVM), Prototype learners (Prot) and K-means learners (Kmean) were used on the same classication task using the Principal Components of the texture and oweld representation of the faces. The classication performance of the learning algorithms was estimated using the face database with the true gender of the faces as labels, and also with the gender estimated by the subjects. Kmean yield a classication performance close to humans while SVM and RVM are much better. This surprising behaviour may be due to the fact that humans are trained on real faces during their lifetime while they were here tested on articial ones, while the algorithms were trained and tested on the same set of stimuli. We then correlated the human responses to the distance of the stimuli to the separating hyperplane (SH) of the learning algorithms. On the whole stimuli far from the SH are classied more accurately, faster and with higher condence than those near to the SH if we pool data across all our subjects and stimuli. We also nd three noteworthy results. First, SVMs and RVMs can learn to classify faces using the subjects' labels but perform much better when using the true labels. Second, correlating the average response of humans (classication error, RT or CR) with the distance to the SH on a face-by-face basis using Spearman's rank correlation coefcients shows that RVMs recreate human performance most closely in every respect. Third, the mean-of-class prototype, its popularity in neuroscience notwithstanding, is the least human-like classier in all cases examined.

ei

Web [BibTex]

Web [BibTex]


no image
m-Alternative-Forced-Choice: Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F., Hill, J., Wichmann, F.

7, pages: 118, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
We explored several ways to improve the efficiency of measuring psychometric functions without resorting to adaptive procedures. a) The number m of alternatives in an m-alternative-forced-choice (m-AFC) task improves the efficiency of the method of constant stimuli. b) When alternatives are presented simultaneously on different positions on a screen rather than sequentially time can be saved and memory load for the subject can be reduced. c) A touch-screen can further help to make the experimental procedure more intuitive. We tested these ideas in the measurement of contrast sensitivity and compared them to results obtained by sequential presentation in two-interval-forced-choice (2-IFC). Qualitatively all methods (m-AFC and 2-IFC) recovered the characterictic shape of the contrast sensitivity function in three subjects. The m-AFC paradigm only took about 60% of the time of the 2-IFC task. We tried m=2,4,8 and found 4-AFC to give the best model fits and 2-AFC to have the least bias.

ei

Web [BibTex]

Web [BibTex]


no image
Efficient Approximations for Support Vector Classifiers

Kienzle, W., Franz, M.

7, pages: 68, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In face detection, support vector machines (SVM) and neural networks (NN) have been shown to outperform most other classication methods. While both approaches are learning-based, there are distinct advantages and drawbacks to each method: NNs are difcult to design and train but can lead to very small and efcient classiers. In comparison, SVM model selection and training is rather straightforward, and, more importantly, guaranteed to converge to a globally optimal (in the sense of training errors) solution. Unfortunately, SVM classiers tend to have large representations which are inappropriate for time-critical image processing applications. In this work, we examine various existing and new methods for simplifying support vector decision rules. Our goal is to obtain efcient classiers (as with NNs) while keeping the numerical and statistical advantages of SVMs. For a given SVM solution, we compute a cascade of approximations with increasing complexities. Each classier is tuned so that the detection rate is near 100%. At run-time, the rst (simplest) detector is evaluated on the whole image. Then, any subsequent classier is applied only to those positions that have been classied as positive throughout all previous stages. The false positive rate at the end equals that of the last (i.e. most complex) detector. In contrast, since many image positions are discarded by lower-complexity classiers, the average computation time per patch decreases signicantly compared to the time needed for evaluating the highest-complexity classier alone.

ei

Web [BibTex]

Web [BibTex]


no image
Selective Attention to Auditory Stimuli: A Brain-Computer Interface Paradigm

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Birbaumer, N., Schölkopf, B.

7, pages: 102, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
During the last 20 years several paradigms for Brain Computer Interfaces have been proposed— see [1] for a recent review. They can be divided into (a) stimulus-driven paradigms, using e.g. event-related potentials or visual evoked potentials from an EEG signal, and (b) patient-driven paradigms such as those that use premotor potentials correlated with imagined action, or slow cortical potentials (e.g. [2]). Our aim is to develop a stimulus-driven paradigm that is applicable in practice to patients. Due to the unreliability of visual perception in “locked-in” patients in the later stages of disorders such as Amyotrophic Lateral Sclerosis, we concentrate on the auditory modality. Speci- cally, we look for the effects, in the EEG signal, of selective attention to one of two concurrent auditory stimulus streams, exploiting the increased activation to attended stimuli that is seen under some circumstances [3]. We present the results of our preliminary experiments on normal subjects. On each of 400 trials, two repetitive stimuli (sequences of drum-beats or other pulsed stimuli) could be heard simultaneously. The two stimuli were distinguishable from one another by their acoustic properties, by their source location (one from a speaker to the left of the subject, the other from the right), and by their differing periodicities. A visual cue preceded the stimulus by 500 msec, indicating which of the two stimuli to attend to, and the subject was instructed to count the beats in the attended stimulus stream. There were up to 6 beats of each stimulus: with equal probability on each trial, all 6 were played, or the fourth was omitted, or the fth was omitted. The 40-channel EEG signals were analyzed ofine to reconstruct which of the streams was attended on each trial. A linear Support Vector Machine [4] was trained on a random subset of the data and tested on the remainder. Results are compared from two types of pre-processing of the signal: for each stimulus stream, (a) EEG signals at the stream's beat periodicity are emphasized, or (b) EEG signals following beats are contrasted with those following missing beats. Both forms of pre-processing show promising results, i.e. that selective attention to one or the other auditory stream yields signals that are classiable signicantly above chance performance. In particular, the second pre-processing was found to be robust to reduction in the number of features used for classication (cf. [5]), helping us to eliminate noise.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Texture and Haptic Cues in Slant Discrimination: Measuring the Effect of Texture Type

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

7, pages: 165, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich, F. A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The inuence of each cue in such average depends on the reliability of the source of information [1,5]. In particular, Ernst and Banks (2002) formulate such combination as that of the minimum variance unbiased estimator that can be constructed from the available cues. We have observed systematic differences in slant discrimination performance of human observers when different types of textures were used as cue to slant [4]. If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. However, the results for slant discrimination obtained when combining these texture types with object motion results are difcult to reconcile with the minimum variance unbiased estimator model [3]. This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, and Landy (2002) [2] have shown that while for between-modality combination the human visual system has access to the single-cue information, for withinmodality combination (visual cues) the single-cue information is lost. This suggests a coupling between visual cues and independence between visual and haptic cues. Then, in the present study we combined the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition these cues are combined as predicted by an unbiased, minimum variance estimator model. The measured weights for the cues were consistent with a combination rule sensitive to the reliability of the sources of information, but did not match the predictions of a statistically optimal combination.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Efficient Approximations for Support Vector Classiers

Kienzle, W., Franz, M.

7, pages: 68, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In face detection, support vector machines (SVM) and neural networks (NN) have been shown to outperform most other classication methods. While both approaches are learning-based, there are distinct advantages and drawbacks to each method: NNs are difcult to design and train but can lead to very small and efcient classiers. In comparison, SVM model selection and training is rather straightforward, and, more importantly, guaranteed to converge to a globally optimal (in the sense of training errors) solution. Unfortunately, SVM classiers tend to have large representations which are inappropriate for time-critical image processing applications. In this work, we examine various existing and new methods for simplifying support vector decision rules. Our goal is to obtain efcient classiers (as with NNs) while keeping the numerical and statistical advantages of SVMs. For a given SVM solution, we compute a cascade of approximations with increasing complexities. Each classier is tuned so that the detection rate is near 100%. At run-time, the rst (simplest) detector is evaluated on the whole image. Then, any subsequent classier is applied only to those positions that have been classied as positive throughout all previous stages. The false positive rate at the end equals that of the last (i.e. most complex) detector. In contrast, since many image positions are discarded by lower-complexity classiers, the average computation time per patch decreases signicantly compared to the time needed for evaluating the highest-complexity classier alone.

ei

Web [BibTex]

Web [BibTex]


no image
EEG Channel Selection for Brain Computer Interface Systems Based on Support Vector Methods

Schröder, M., Lal, T., Bogdan, M., Schölkopf, B.

7, pages: 50, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
A Brain Computer Interface (BCI) system allows the direct interpretation of brain activity patterns (e.g. EEG signals) by a computer. Typical BCI applications comprise spelling aids or environmental control systems supporting paralyzed patients that have lost motor control completely. The design of an EEG based BCI system requires good answers for the problem of selecting useful features during the performance of a mental task as well as for the problem of classifying these features. For the special case of choosing appropriate EEG channels from several available channels, we propose the application of variants of the Support Vector Machine (SVM) for both problems. Although these algorithms do not rely on prior knowledge they can provide more accurate solutions than standard lter methods [1] for feature selection which usually incorporate prior knowledge about neural activity patterns during the performed mental tasks. For judging the importance of features we introduce a new relevance measure and apply it to EEG channels. Although we base the relevance measure for this purpose on the previously introduced algorithms, it does in general not depend on specic algorithms but can be derived using arbitrary combinations of feature selectors and classifiers.

ei

Web [BibTex]

Web [BibTex]


no image
Learning Depth

Sinz, F., Franz, MO.

pages: 69, (Editors: H.H.Bülthoff, H.A.Mallot, R.Ulrich,F.A.Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
The depth of a point in space can be estimated by observing its image position from two different viewpoints. The classical approach to stereo vision calculates depth from the two projection equations which together form a stereocamera model. An unavoidable preparatory work for this solution is a calibration procedure, i.e., estimating the external (position and orientation) and internal (focal length, lens distortions etc.) parameters of each camera from a set of points with known spatial position and their corresponding image positions. This is normally done by iteratively linearizing the single camera models and reestimating their parameters according to the error on the known datapoints. The advantage of the classical method is the maximal usage of prior knowledge about the underlying physical processes and the explicit estimation of meaningful model parameters such as focal length or camera position in space. However, the approach neglects the nonlinear nature of the problem such that the results critically depend on the choice of the initial values for the parameters. In this study, we approach the depth estimation problem from a different point of view by applying generic machine learning algorithms to learn the mapping from image coordinates to spatial position. These algorithms do not require any domain knowledge and are able to learn nonlinear functions by mapping the inputs into a higher-dimensional space. Compared to classical calibration, machine learning methods give a direct solution to the depth estimation problem which means that the values of the stereocamera parameters cannot be extracted from the learned mapping. On the poster, we compare the performance of classical camera calibration to that of different machine learning algorithms such as kernel ridge regression, gaussian processes and support vector regression. Our results indicate that generic learning approaches can lead to higher depth accuracies than classical calibration although no domain knowledge is used.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes in Machine Learning

Rasmussen, CE.

In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

Abstract
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]