Header logo is


2017


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF [BibTex]

2017


PDF [BibTex]


Thumb xl 9780262036436
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

ei pn

DOI [BibTex]

DOI [BibTex]

2010


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)

Abstract
From an engineering standpoint, the increasing complexity of robotic systems and the increasing demand for more autonomously learning robots, has become essential. This book is largely based on the successful workshop "From motor to interaction learning in robots" held at the IEEE/RSJ International Conference on Intelligent Robot Systems. The major aim of the book is to give students interested the topics described above a chance to get started faster and researchers a helpful compandium.

ei

Web DOI [BibTex]

2010


Web DOI [BibTex]


no image
Handbook of Hydrogen Storage

Hirscher, M.

pages: 353 p., Wiley-VCH, Weinheim, 2010 (book)

mms

[BibTex]

[BibTex]

2003


no image
Magnetism and the Microstructure of Ferromagnetic Solids

Kronmüller, H., Fähnle, M.

pages: 432 p., 1st ed., Cambridge University Press, Cambridge, 2003 (book)

mms

[BibTex]

2003


[BibTex]

2000


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

ei

Web [BibTex]

2000


Web [BibTex]