Header logo is


2016


no image
Interface-controlled phenomena in nanomaterials

Mittemeijer, Eric J.; Wang, Zumin

2016 (mpi_year_book)

Abstract
Nanosized material systems characteristically exhibit an excessively high internal interface density. A series of previously unknown phenomena in nanomaterials have been disclosed that are fundamentally caused by the presence of interfaces. Thus anomalously large and small lattice parameters in nanocrystalline metals, quantum stress oscillations in growing nanofilms, and extraordinary atomic mobility at ultralow temperatures have been observed and explained. The attained understanding for these new phenomena can lead to new, sophisticated applications of nanomaterials in advanced technologies.

link (url) [BibTex]

2016


link (url) [BibTex]


no image
Robots learn how to see

Geiger, A.

2016 (mpi_year_book)

Abstract
Autonomous vehicles and intelligent service robots could soon contribute to making our lives more pleasant and secure. However, for autonomous operation such systems first need to learn the perception process itself. This involves measuring distances and motions, detecting objects and interpreting the threedimensional world as a whole. While humans perceive their environment with seemingly little efforts, computers first need to be trained for these tasks. Our research is concerned with developing mathematical models which allow computers to robustly perceive their environment.

link (url) DOI [BibTex]

2015


no image
Learning robots

Trimpe, S.

2015 (mpi_year_book)

Abstract
An exploded power plant, collapsed buildings after an earthquake, a burning vehicle loaded with hazardous goods – all of these are dangerous situations for human emergency responders. What if we could send robots instead of humans? Researchers at the Autonomous Motion Department work on fundamental principles required to build intelligent robots which one day can help us in dangerous situations. A key requirement for making this happen is that robots must be enabled to learn.

link (url) [BibTex]

2015



no image
The smallest human-made nano-motor

Sánchez, Samuel

2015 (mpi_year_book)

Abstract
Tiny self-propelled motors which speed through the water and clean up pollutions along the way or small robots which can swim effortlessly through blood to one day transport medication to a certain part of the body – this sounds like taken from a science fiction movie script. However, Samuel Sánchez is already hard at work in his lab at the Max Planck Institute for Intelligent Systems in Stuttgart to make these visions come true. Self-propelled micro-nanorobots and the usage as integrated sensors in microfluid-chips: that’s the topic of Sánchez` research group.

link (url) [BibTex]

link (url) [BibTex]

2007


no image
Predicting Structured Data

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.

pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

ei

Web [BibTex]

2007


Web [BibTex]

2004


no image
Kernel Methods in Computational Biology

Schölkopf, B., Tsuda, K., Vert, J.

pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

Abstract
Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters—an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology—the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

ei

Web [BibTex]

2004


Web [BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

ei

Web [BibTex]

2002


Web [BibTex]


no image
test jon
(book)

[BibTex]