Header logo is


2017


Thumb xl op2
Robotic Motion Learning Framework to Promote Social Engagement

Burns, R.

The George Washington University, August 2017 (mastersthesis)

Abstract
This paper discusses a novel framework designed to increase human-robot interaction through robotic imitation of the user's gestures. The set up consists of a humanoid robotic agent that socializes with and play games with the user. For the experimental group, the robot also imitates one of the user's novel gestures during a play session. We hypothesize that the robot's use of imitation will increase the user's openness towards engaging with the robot. Preliminary results from a pilot study of 12 subjects are promising in that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

hi

link (url) [BibTex]

2017


link (url) [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


no image
Change-point Detection and Kernels Methods

Garreau, D.

Ecole Normale Supérieure / PSL Research University, 2017 (thesis)

link (url) [BibTex]

link (url) [BibTex]


Thumb xl phd thesis teaser
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

ps

pdf [BibTex]

pdf [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2016


Thumb xl screen shot 2016 07 25 at 13.52.05
Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes

Lehrmann, A.

ETH Zurich, July 2016 (phdthesis)

Abstract
The purpose of this thesis is the study of non-parametric models for structured data and their fields of application in computer vision. We aim at the development of context-sensitive architectures which are both expressive and efficient. Our focus is on directed graphical models, in particular Bayesian networks, where we combine the flexibility of non-parametric local distributions with the efficiency of a global topology with bounded treewidth. A bound on the treewidth is obtained by either constraining the maximum indegree of the underlying graph structure or by introducing determinism. The non-parametric distributions in the nodes of the graph are given by decision trees or kernel density estimators. The information flow implied by specific network topologies, especially the resultant (conditional) independencies, allows for a natural integration and control of contextual information. We distinguish between three different types of context: static, dynamic, and semantic. In four different approaches we propose models which exhibit varying combinations of these contextual properties and allow modeling of structured data in space, time, and hierarchies derived thereof. The generative character of the presented models enables a direct synthesis of plausible hypotheses. Extensive experiments validate the developed models in two application scenarios which are of particular interest in computer vision: human bodies and natural scenes. In the practical sections of this work we discuss both areas from different angles and show applications of our models to human pose, motion, and segmentation as well as object categorization and localization. Here, we benefit from the availability of modern datasets of unprecedented size and diversity. Comparisons to traditional approaches and state-of-the-art research on the basis of well-established evaluation criteria allows the objective assessment of our contributions.

ps

pdf [BibTex]


Thumb xl fundusphotoanthal
Deep Learning for Diabetic Retinopathy Diagnostics

Balles, L.

Heidelberg University, 2016, in cooperation with Bosch Corporate Research (mastersthesis)

[BibTex]

[BibTex]


no image
Statische und dynamische Magnetisierungseigenschaften nanoskaliger Überstrukturen

Gräfe, J.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Gepinnte Bahnmomente in magnetischen Heterostrukturen

Audehm, P.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Austauschgekoppelte Moden in magnetischen Vortexstrukturen

Dieterle, G.

Universität Stuttgart, Stuttgart, 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Density matrix calculations for the ultrafast demagnetization after femtosecond laser pulses

Weng, Weikai

Universität Stuttgart, Stuttgart, 2016 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Deep Learning for Diabetic Retinopathy Diagnostics

Balles, Lukas

Heidelberg University, 2016 (mastersthesis)

[BibTex]

[BibTex]


no image
Helium und Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks

Zaiser, Ingrid

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]

2011


Thumb xl screen shot 2015 08 23 at 15.47.13
Multi-Modal Scene Understanding for Robotic Grasping

Bohg, J.

(2011:17):vi, 194, Trita-CSC-A, KTH Royal Institute of Technology, KTH, Computer Vision and Active Perception, CVAP, Centre for Autonomous Systems, CAS, KTH, Centre for Autonomous Systems, CAS, December 2011 (phdthesis)

Abstract
Current robotics research is largely driven by the vision of creating an intelligent being that can perform dangerous, difficult or unpopular tasks. These can for example be exploring the surface of planet mars or the bottom of the ocean, maintaining a furnace or assembling a car. They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, are already frequently performed by robots. Others are still completely out of reach. Especially, household robots are far away from being deployable as general purpose devices. Although advancements have been made in this research area, robots are not yet able to perform household chores robustly in unstructured and open-ended environments given unexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual and motor capabilities are necessary for the robot to perform common tasks in a household scenario. In that context, an essential capability is to understand the scene that the robot has to interact with. This involves separating objects from the background but also from each other.Once this is achieved, many other tasks become much easier. Configuration of object scan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and even state-of-the-art methods may fail. Given an incomplete, noisy and potentially erroneously segmented scene model, the questions remain how suitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of prediction mechanisms that allow it to hypothesize about parts of the scene it has not yet observed. Additionally, the robot can also quantify how uncertain it is about this prediction allowing it to plan actions for exploring the scene at specifically uncertain places. We consider multiple modalities including monocular and stereo vision, haptic sensing and information obtained through a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modal exploration, grasps can be inferred for each object hypothesis. Dependent on whether the objects are known, familiar or unknown, different methodologies for grasp inference apply. In this thesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed and open-loop manner showing the effectiveness of the proposed methods in real-world scenarios.

am

pdf [BibTex]

2011


pdf [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Learning functions with kernel methods

Dinuzzo, F.

University of Pavia, Italy, January 2011 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

am

[BibTex]

[BibTex]


no image
Ferromagnetism of ZnO influenced by physical and chemical treatment

Chen, Y.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung von ultradünnen, funktionellen CoFeB Filmen

Streckenbach, F.

Hochschule Esslingen / Hochschule Aalen, Esslingen / Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption on metal-organic frameworks

Streppel, B.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Piezo driven strain effects on magneto-crystalline anisotropy

Badr, E.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an granularen und beschichteten MgB2 Filmen

Stahl, C.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Mikromagnetismus der Wechselwirkung von Spinwellen mit Domänenwänden in Ferromagneten

Macke, S.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

[BibTex]

[BibTex]


Thumb xl thesis
Spatial Models of Human Motion

Soren Hauberg

University of Copenhagen, 2011 (phdthesis)

ps

PDF [BibTex]

PDF [BibTex]


no image
Herstellung und Qualifizierung gesputterter Magnesiumdiboridschichten

Breyer, F.

Hochschule Aalen, Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Study of krypton/xenon storage and separation in microporous frameworks

Soleimani Dorcheh, A.

Universität Darmstadt, Darmstadt, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]

2006


no image
Extraction of visual features from natural video data using Slow Feature Analysis

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2006 (diplomathesis)

Abstract
Das Forschungsprojekt NeuRoBot hat das un{\"u}berwachte Erlernen einer neuronal inspirierten Steuerungsarchitektur zum Ziel, und zwar unter den Randbedingungen biologischer Plausibilit{\"a}t und der Benutzung einer Kamera als einzigen Sensor. Visuelle Merkmale, die ein angemessenes Abbild der Umgebung liefern, sind unerl{\"a}sslich, um das Ziel kollisionsfreier Navigation zu erreichen. Zeitliche Koh{\"a}renz ist ein neues Lernprinzip, das in der Lage ist, Erkenntnisse aus der Biologie des Sehens zu reproduzieren. Es wird durch die Beobachtung motiviert, dass die “Sensoren” der Retina auf deutlich k{\"u}rzeren Zeitskalen variieren als eine abstrakte Beschreibung. Zeitliche Langsamkeitsanalyse l{\"o}st das Problem, indem sie zeitlich langsam ver{\"a}nderliche Signale aus schnell ver{\"a}nderlichen Eingabesignalen extrahiert. Eine Verallgemeinerung auf Signale, die nichtlinear von den Eingaben abh{\"a}ngen, ist durch die Anwendung des Kernel-Tricks m{\"o}glich. Das einzig benutzte Vorwissen ist die zeitliche Glattheit der gewonnenen Signale. In der vorliegenden Diplomarbeit wird Langsamkeitsanalyse auf Bildausschnitte von Videos einer Roboterkamera und einer Simulationsumgebung angewendet. Zuallererst werden mittels Parameterexploration und Kreuzvalidierung die langsamst m{\"o}glichen Funktionen bestimmt. Anschließend werden die Merkmalsfunktionen analysiert und einige Ansatzpunkte f{\"u}r ihre Interpretation angegeben. Aufgrund der sehr großen Datens{\"a}tze und der umfangreichen Berechnungen behandelt ein Großteil dieser Arbeit auch Aufwandsbetrachtungen und Fragen der effizienten Berechnung. Kantendetektoren in verschiedenen Phasen und mit haupts{\"a}chlich horizontaler Orientierung stellen die wichtigsten aus der Analyse hervorgehenden Funktionen dar. Eine Anwendung auf konkrete Navigationsaufgaben des Roboters konnte bisher nicht erreicht werden. Eine visuelle Interpretation der erlernten Merkmale ist jedoch durchaus gegeben.

ei

PDF [BibTex]

2006


PDF [BibTex]


no image
An Online-Computation Approach to Optimal Finite-Horizon State-Feedback Control of Nonlinear Stochastic Systems

Deisenroth, MP.

Biologische Kybernetik, Universität Karlsruhe (TH), Karlsruhe, Germany, August 2006 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]