Header logo is



Thumb xl toc image patent
Convertor

Fischer, P., Mark, A.

May 2014 (patent)

pf

[BibTex]

[BibTex]


no image
Method and device for blind correction of optical aberrations in a digital image

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

International Patent Application, No. PCT/EP2012/068868, April 2014 (patent)

ei

[BibTex]


no image
Single-Source Domain Adaptation with Target and Conditional Shift

Zhang, K., Schölkopf, B., Muandet, K., Wang, Z., Zhou, Z., Persello, C.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Higher-Order Tensors in Diffusion Imaging

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Fuzzy Fibers: Uncertainty in dMRI Tractography

Schultz, T., Vilanova, A., Brecheisen, R., Kindlmann, G.

In Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Nonconvex Proximal Splitting with Computational Errors

Sra, S.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

ei

[BibTex]

[BibTex]


no image
Active Learning - Modern Learning Theory

Balcan, M., Urner, R.

In Encyclopedia of Algorithms, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl muscle
Muscle Synergy Features in Behavior Adaptation and Recovery

Alnajjar, F. S., Berenz, V., Ken-ichi, O., Ohno, K., Yamada, H., Kondo, I., Shimoda, S.

In Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, 24-26 June, 2014, pages: 245-253, Springer International Publishing, Cham, 2014 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Recognition and Manipulation for Mobile Robot Bin Picking

Holz, D., Nieuwenhuisen, M., Droeschel, D., Stueckler, J., Berner, A., Li, J., Klein, R., Behnke, S.

In Gearing Up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe: Technology Transfer Experiments from the ECHORD Project, pages: 133-153, Springer, 2014 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Increasing Flexibility of Mobile Manipulation and Intuitive Human-Robot Interaction in RoboCup@Home

Stueckler, J., Droeschel, D., Gräve, K., Holz, D., Schreiber, M., Topaldou-Kyniazopoulou, A., Schwarz, M., Behnke, S.

In RoboCup 2013, Robot Soccer World Cup XVII, pages: 135-146, Springer, 2014 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Addressing of Micro-robot Teams and Non-contact Micro-manipulation

Diller, E., Ye, Z., Giltinan, J., Sitti, M.

In Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, pages: 28-38, Springer Berlin Heidelberg, 2014 (incollection)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Robot Learning by Guided Self-Organization

Martius, G., Der, R., Herrmann, J. M.

In Guided Self-Organization: Inception, 9, pages: 223-260, Emergence, Complexity and Computation, Springer Berlin Heidelberg, 2014 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl simulated annealing
Simulated Annealing

Gall, J.

In Encyclopedia of Computer Vision, pages: 737-741, 0, (Editors: Ikeuchi, K. ), Springer Verlag, 2014, to appear (inbook)

ps

[BibTex]

[BibTex]

2009


no image
Methods for feature selection in a learning machine

Weston, J., Elisseeff, A., Schölkopf, B., Pérez-Cruz, F.

United States Patent, No 7624074, November 2009 (patent)

ei

[BibTex]

2009


[BibTex]


no image
Toward a Theory of Consciousness

Tononi, G., Balduzzi, D.

In The Cognitive Neurosciences, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Acquiring web page information without commitment to downloading the web page

Heilbron, L., Platt, J. C., Simard, P. Y., Schölkopf, B.

United States Patent, No 7565409, July 2009 (patent)

ei

[BibTex]

[BibTex]


no image
Text Clustering with Mixture of von Mises-Fisher Distributions

Sra, S., Banerjee, A., Ghosh, J., Dhillon, I.

In Text mining: classification, clustering, and applications, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Data Mining for Biologists

Tsuda, K.

In Biological Data Mining in Protein Interaction Networks, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

Abstract
In this tutorial chapter, we review basics about frequent pattern mining algorithms, including itemset mining, association rule mining and graph mining. These algorithms can find frequently appearing substructures in discrete data. They can discover structural motifs, for example, from mutation data, protein structures and chemical compounds. As they have been primarily used for business data, biological applications are not so common yet, but their potential impact would be large. Recent advances in computers including multicore machines and ever increasing memory capacity support the application of such methods to larger datasets. We explain technical aspects of the algorithms, but do not go into details. Current biological applications are summarized and possible future directions are given.

ei

Web [BibTex]

Web [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Pre−processed feature ranking for a support vector machine

Weston, J., Elisseeff, A., Schölkopf, B., Pérez-Cruz, F., Guyon, I.

United States Patent, No. 7475048, January 2009 (patent)

ei

[BibTex]

[BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Thumb xl synchro
Synchronized Oriented Mutations Algorithm for Training Neural Controllers

Berenz, V., Suzuki, K.

In Advances in Neuro-Information Processing: 15th International Conference, ICONIP 2008, Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers, Part II, pages: 244-251, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 14.45.26
Integration of Visual Cues for Robotic Grasping

Bergström, N., Bohg, J., Kragic, D.

In Computer Vision Systems, 5815, pages: 245-254, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009 (incollection)

Abstract
In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

am

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

ei ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

ps

link (url) [BibTex]

link (url) [BibTex]


no image
Metal-Organic Frameworks

Panella, B., Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 493-496, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]


no image
Carbon Materials

Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 484-487, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]

2007


no image
Support Vector Machine Learning for Interdependent and Structured Output Spaces

Altun, Y., Hofmann, T., Tsochantaridis, I.

In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

Web [BibTex]

2007


Web [BibTex]


no image
Brisk Kernel ICA

Jegelka, S., Gretton, A.

In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Recent approaches to independent component analysis have used kernel independence measures to obtain very good performance in ICA, particularly in areas where classical methods experience difficulty (for instance, sources with near-zero kurtosis). In this chapter, we compare two efficient extensions of these methods for large-scale problems: random subsampling of entries in the Gram matrices used in defining the independence measures, and incomplete Cholesky decomposition of these matrices. We derive closed-form, efficiently computable approximations for the gradients of these measures, and compare their performance on ICA using both artificial and music data. We show that kernel ICA can scale up to much larger problems than yet attempted, and that incomplete Cholesky decomposition performs better than random sampling.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason to ignore this possibility. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approximation Methods for Gaussian Process Regression

Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.

In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
A wealth of computationally efficient approximation methods for Gaussian process regression have been recently proposed. We give a unifying overview of sparse approximations, following Quiñonero-Candela and Rasmussen (2005), and a brief review of approximate matrix-vector multiplication methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

Altun, Y., Smola, A.

In Predicting Structured Data, pages: 283-300, Advances in neural information processing systems, (Editors: BakIr, G. H., T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V.N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
In this paper we study the problem of estimating conditional probability distributions for structured output prediction tasks in Reproducing Kernel Hilbert Spaces. More specically, we prove decomposition results for undirected graphical models, give constructions for kernels, and show connections to Gaussian Process classi- cation. Finally we present ecient means of solving the optimization problem and apply this to label sequence learning. Experiments on named entity recognition and pitch accent prediction tasks demonstrate the competitiveness of our approach.

ei

Web [BibTex]

Web [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In Large Scale Kernel Machines, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how nonconvexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals

Hill, N., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., Elger, C., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Joint Kernel Maps

Weston, J., Bakir, G., Bousquet, O., Mann, T., Noble, W., Schölkopf, B.

In Predicting Structured Data, pages: 67-84, Advances in neural information processing systems, (Editors: GH Bakir and T Hofmann and B Schölkopf and AJ Smola and B Taskar and SVN Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach

Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T., Hill, J., Mellinger, J., Bensch, M., Tangermann, M., Widman, G., Elger, C., Rosenstiel, W., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Pattern detection

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 7236626, June 2007 (patent)

ei

[BibTex]

[BibTex]


no image
Probabilistic Structure Calculation

Rieping, W., Habeck, M., Nilges, M.

In Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

ei

DOI [BibTex]

DOI [BibTex]


no image
Some comments on ν-SVM

Dinuzzo, F., De Nicolao, G.

In A tribute to Antonio Lepschy, pages: -, (Editors: Picci, G. , M. E. Valcher), Edizione Libreria Progetto, Padova, Italy, 2007 (inbook)

ei

[BibTex]

[BibTex]


Thumb xl implant
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

ps

pdf [BibTex]

pdf [BibTex]


no image
Dynamics systems vs. optimal control ? a unifying view

Schaal, S, Mohajerian, P., Ijspeert, A.

In Progress in Brain Research, (165):425-445, 2007, clmc (inbook)

Abstract
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Bacteria integrated swimming microrobots

Behkam, B., Sitti, M.

In 50 years of artificial intelligence, pages: 154-163, Springer Berlin Heidelberg, 2007 (incollection)

pi

[BibTex]

[BibTex]


no image
Micromagnetism-microstructure relations and the hysteresis loop

Goll, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 2: Micromagnetism, pages: 1023-1058, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Synchrotron radiation techniques based on X-ray magnetic circular dichroism

Schütz, G., Goering, E., Stoll, H.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 3: Materials Novel Techniques for Characterizing and Preparing Samples, pages: 1311-1363, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Micromagnetism-microstructure relations and the hysteresis loop

Goll, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 2: Micromagnetism, pages: 1023-1058, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Dissipative magnetization dynamics close to the adiabatic regime

Fähnle, M., Steiauf, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 1: Fundamental and Theory, pages: 282-302, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]

1992


no image
Informationssysteme mit CAD (Information systems within CAD)

Schaal, S.

In CAD/CAM Grundlagen, pages: 199-204, (Editors: Milberg, J.), Springer, Buchreihe CIM-TT. Berlin, 1992, clmc (inbook)

am

[BibTex]

1992


[BibTex]