Header logo is


2019


no image
Robot Learning for Muscular Robots

Büchler, D.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

ei

[BibTex]

2019


[BibTex]


no image
Real Time Probabilistic Models for Robot Trajectories

Gomez-Gonzalez, S.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl lic overview
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]


no image
Load-inducing factors in instructional design: Process-related advances in theory and assessment

Wirzberger, M.

TU Chemnitz, 2019 (phdthesis)

Abstract
This thesis addresses ongoing controversies in cognitive load research related to the scope and interplay of resource-demanding factors in instructional situations on a temporal perspective. In a novel approach, it applies experimental task frameworks from basic cognitive research and combines different methods for assessing cognitive load and underlying cognitive processes. Taken together, the obtained evidence emphasizes a process-related reconceptualization of the existing theoretical cognitive load framework and underlines the importance of a multimethod-approach to continuous cognitive load assessment. On a practical side, it informs the development of adaptive algorithms and the learner-aligned design of instructional support and thus leverages a pathway towards intelligent educational assistants.

re

link (url) [BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL Research University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

2007


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

ei

PDF [BibTex]

2007


PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Predicting Structured Data

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.

pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

ei

Web [BibTex]

Web [BibTex]


no image
Large-Scale Kernel Machines

Bottou, L., Chapelle, O., DeCoste, D., Weston, J.

pages: 416, Neural Information Processing Series, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically.

ei

Web [BibTex]

Web [BibTex]


no image
Error Correcting Codes for the P300 Visual Speller

Biessmann, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)

Abstract
The aim of brain-computer interface (BCI) research is to establish a communication system based on intentional modulation of brain activity. This is accomplished by classifying patterns of brain ac- tivity, volitionally induced by the user. The BCI presented in this study is based on a classical paradigm as proposed by (Farwell and Donchin, 1988), the P300 visual speller. Recording electroencephalo- grams (EEG) from the scalp while presenting letters successively to the user, the speller can infer from the brain signal which letter the user was focussing on. Since EEG recordings are noisy, usually many repetitions are needed to detect the correct letter. The focus of this study was to improve the accuracy of the visual speller applying some basic principles from information theory: Stimulus sequences of the speller have been modified into error-correcting codes. Additionally a language model was incorporated into the probabilistic letter de- coder. Classification of single EEG epochs was less accurate using error correcting codes. However, the novel code could compensate for that such that overall, letter accuracies were as high as or even higher than for classical stimulus codes. In particular at high noise levels, error-correcting decoding achieved higher letter accuracies.

ei

PDF [BibTex]

PDF [BibTex]


no image
Data-driven goodness-of-fit tests

Langovoy, MA.

Biologische Kybernetik, Georg-August-Universität Göttingen, Göttingen, Germany, July 2007 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning

Görür, D.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Applications of Kernel Machines to Structured Data

Eichhorn, J.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2007, passed with "sehr gut", published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
A priori Knowledge from Non-Examples

Sinz, FH.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning for Mass Production and Industrial Engineering

Pfingsten, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner

Hofmann, M.

Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning of Motor Skills for Robotics

Peters, J.

University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can accomplish a multitude of different tasks, triggered by environmental context or higher level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning and human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this thesis, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting. As a theoretical foundation, we first study a general framework to generate control laws for real robots with a particular focus on skills represented as dynamical systems in differential constraint form. We present a point-wise optimal control framework resulting from a generalization of Gauss' principle and show how various well-known robot control laws can be derived by modifying the metric of the employed cost function. The framework has been successfully applied to task space tracking control for holonomic systems for several different metrics on the anthropomorphic SARCOS Master Arm. In order to overcome the limiting requirement of accurate robot models, we first employ learning methods to find learning controllers for task space control. However, when learning to execute a redundant control problem, we face the general problem of the non-convexity of the solution space which can force the robot to steer into physically impossible configurations if supervised learning methods are employed without further consideration. This problem can be resolved using two major insights, i.e., the learning problem can be treated as locally convex and the cost function of the analytical framework can be used to ensure global consistency. Thus, we derive an immediate reinforcement learning algorithm from the expectation-maximization point of view which leads to a reward-weighted regression technique. This method can be used both for operational space control as well as general immediate reward reinforcement learning problems. We demonstrate the feasibility of the resulting framework on the problem of redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as well as for a simulated anthropomorphic SARCOS Master Arm. While learning to execute tasks in task space is an essential component to a general framework to motor skill learning, learning the actual task is of even higher importance, particularly as this issue is more frequently beyond the abilities of analytical approaches than execution. We focus on the learning of elemental tasks which can serve as the "building blocks of movement generation", called motor primitives. Motor primitives are parameterized task representations based on splines or nonlinear differential equations with desired attractor properties. While imitation learning of parameterized motor primitives is a relatively well-understood problem, the self-improvement by interaction of the system with the environment remains a challenging problem, tackled in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. In conclusion, in this thesis, we have contributed a general framework for analytically computing robot control laws which can be used for deriving various previous control approaches and serves as foundation as well as inspiration for our learning algorithms. We have introduced two classes of novel reinforcement learning methods, i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These algorithms have been used in order to replace the analytical components of the theoretical framework by learned representations. Evaluations have been performed on both simulated and real robot arms.

am ei

[BibTex]

[BibTex]


no image
On the theory of magnetization dynamics of non-collinear spin systems in the s-d model

De Angeli, L.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Zur ab-initio Elektronentheorie des Magnetismus bei endlichen Temperaturen

Dietermann, F.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Röntgenzirkulardichroische Untersuchungen an ferromagnetischen verdünnten Halbleitersystemen

Tietze, T.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Low-dimensional Fe on vicinal Ir(997): Growth and magnetic properties

Kawwam, M.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Micromagnetic simulations of switching processes and the role of thermal fluctuations

Macke, S.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Physisorption von Wasserstoff in neuen Materialien mit gro\sser spezifischer Oberfläche

Schmitz, B.

Universität Bonn, Bonn, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Towards spin injection into silicon

Dash, S. P.

Universität Stuttgart, Stuttgart, 2007 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Bestimmung der kritischen Schichtdicken ferromagnetischer Plättchen für Eindomänenverhalten

Soehnle, S.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Zeitaufgelöste Röntgenmikroskopie an magnetischen Mikrostrukturen

Puzic, A.

Universität Stuttgart, Stuttgart, 2007 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Vortex dynamics studied by time-resolved X-ray microscopy

Chou, K. W.

Universität Stuttgart, Stuttgart, 2007 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Resonante magnetische Reflektometrie an Ferromagnet/Paramagnet Heterostrukturen

Ferreras Paz, V.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung dünner Niob-Schichten auf verschiedenen Substraten

Mayer, M. W. R.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Formation of hard magnetic L10-FePt/FePd monolayers from elemental multilayers

Goo, N. H.

Universität Stuttgart, Stuttgart, 2007 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Zur ab-initio Elektronentheorie stark nichtkollinearer Spinsysteme

Köberle, I.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Theorie der Kernspektroskopie mit zirkular polarisierter Gammastrahlung

Engelhart, W.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Untersuchung der Adsorption von Wasserstoff in porösen Materialien

Hönes, K.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Untersuchung der mechanischen Eigenschaften dünner Chromschichten

Jüllig, P.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

mms

[BibTex]

[BibTex]

1999


no image
Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination

Wichmann, F.

University of Oxford, University of Oxford, October 1999 (phdthesis)

ei

[BibTex]

1999


[BibTex]


no image
Apprentissage Automatique et Simplicite

Bousquet, O.

Biologische Kybernetik, 1999, In french (diplomathesis)

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Machine Learning and Language Acquisition: A Model of Child’s Learning of Turkish Morphophonology

Altun, Y.

Middle East Technical University, Ankara, Turkey, 1999 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Advances in Kernel Methods - Support Vector Learning

Schölkopf, B., Burges, C., Smola, A.

MIT Press, Cambridge, MA, 1999 (book)

ei

[BibTex]

[BibTex]


no image
test jon
(book)

[BibTex]