Header logo is


2019


Towards Geometric Understanding of Motion
Towards Geometric Understanding of Motion

Ranjan, A.

University of Tübingen, December 2019 (phdthesis)

Abstract

The motion of the world is inherently dependent on the spatial structure of the world and its geometry. Therefore, classical optical flow methods try to model this geometry to solve for the motion. However, recent deep learning methods take a completely different approach. They try to predict optical flow by learning from labelled data. Although deep networks have shown state-of-the-art performance on classification problems in computer vision, they have not been as effective in solving optical flow. The key reason is that deep learning methods do not explicitly model the structure of the world in a neural network, and instead expect the network to learn about the structure from data. We hypothesize that it is difficult for a network to learn about motion without any constraint on the structure of the world. Therefore, we explore several approaches to explicitly model the geometry of the world and its spatial structure in deep neural networks.

The spatial structure in images can be captured by representing it at multiple scales. To represent multiple scales of images in deep neural nets, we introduce a Spatial Pyramid Network (SpyNet). Such a network can leverage global information for estimating large motions and local information for estimating small motions. We show that SpyNet significantly improves over previous optical flow networks while also being the smallest and fastest neural network for motion estimation. SPyNet achieves a 97% reduction in model parameters over previous methods and is more accurate.

The spatial structure of the world extends to people and their motion. Humans have a very well-defined structure, and this information is useful in estimating optical flow for humans. To leverage this information, we create a synthetic dataset for human optical flow using a statistical human body model and motion capture sequences. We use this dataset to train deep networks and see significant improvement in the ability of the networks to estimate human optical flow.

The structure and geometry of the world affects the motion. Therefore, learning about the structure of the scene together with the motion can benefit both problems. To facilitate this, we introduce Competitive Collaboration, where several neural networks are constrained by geometry and can jointly learn about structure and motion in the scene without any labels. To this end, we show that jointly learning single view depth prediction, camera motion, optical flow and motion segmentation using Competitive Collaboration achieves state-of-the-art results among unsupervised approaches.

Our findings provide support for our hypothesis that explicit constraints on structure and geometry of the world lead to better methods for motion estimation.

ps

PhD Thesis [BibTex]

2019


PhD Thesis [BibTex]


no image
Robot Learning for Muscular Robots

Büchler, D.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Real Time Probabilistic Models for Robot Trajectories

Gomez-Gonzalez, S.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Actively Learning Gaussian Process Dynamics

Buisson-Fenet, M., Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

Abstract
Despite the availability of ever more data enabled through modern sensor and computer technology, it still remains an open problem to learn dynamical systems in a sample-efficient way. We propose active learning strategies that leverage information-theoretical properties arising naturally during Gaussian process regression, while respecting constraints on the sampling process imposed by the system dynamics. Sample points are selected in regions with high uncertainty, leading to exploratory behavior and data-efficient training of the model. All results are verified in an extensive numerical benchmark.

ics

ArXiv [BibTex]


Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]


no image
Load-inducing factors in instructional design: Process-related advances in theory and assessment

Wirzberger, M.

TU Chemnitz, 2019 (phdthesis)

Abstract
This thesis addresses ongoing controversies in cognitive load research related to the scope and interplay of resource-demanding factors in instructional situations on a temporal perspective. In a novel approach, it applies experimental task frameworks from basic cognitive research and combines different methods for assessing cognitive load and underlying cognitive processes. Taken together, the obtained evidence emphasizes a process-related reconceptualization of the existing theoretical cognitive load framework and underlines the importance of a multimethod-approach to continuous cognitive load assessment. On a practical side, it informs the development of adaptive algorithms and the learner-aligned design of instructional support and thus leverages a pathway towards intelligent educational assistants.

re

link (url) [BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

ics

arXiv PDF [BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL Research University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

1999


no image
Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination

Wichmann, F.

University of Oxford, University of Oxford, October 1999 (phdthesis)

ei

[BibTex]

1999


[BibTex]


no image
Estimating the support of a high-dimensional distribution

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

(MSR-TR-99-87), Microsoft Research, 1999 (techreport)

ei

Web [BibTex]

Web [BibTex]


no image
Generalization Bounds via Eigenvalues of the Gram matrix

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

(99-035), NeuroCOLT, 1999 (techreport)

ei

[BibTex]

[BibTex]


no image
Apprentissage Automatique et Simplicite

Bousquet, O.

Biologische Kybernetik, 1999, In french (diplomathesis)

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Sparse kernel feature analysis

Smola, A., Mangasarian, O., Schölkopf, B.

(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Machine Learning and Language Acquisition: A Model of Child’s Learning of Turkish Morphophonology

Altun, Y.

Middle East Technical University, Ankara, Turkey, 1999 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Advances in Kernel Methods - Support Vector Learning

Schölkopf, B., Burges, C., Smola, A.

MIT Press, Cambridge, MA, 1999 (book)

ei

[BibTex]

[BibTex]

1996


no image
The DELVE user manual

Rasmussen, CE., Neal, RM., Hinton, GE., van Camp, D., Revow, M., Ghahramani, Z., Kustra, R., Tibshirani, R.

Department of Computer Science, University of Toronto, December 1996 (techreport)

Abstract
This manual describes the preliminary release of the DELVE environment. Some features described here have not yet implemented, as noted. Support for regression tasks is presently somewhat more developed than that for classification tasks. We recommend that you exercise caution when using this version of DELVE for real work, as it is possible that bugs remain in the software. We hope that you will send us reports of any problems you encounter, as well as any other comments you may have on the software or manual, at the e-mail address below. Please mention the version number of the manual and/or the software with any comments you send.

ei

GZIP [BibTex]

1996


GZIP [BibTex]


no image
Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Schölkopf, B., Smola, A., Müller, K.

(44), Max Planck Institute for Biological Cybernetics Tübingen, December 1996, This technical report has also been published elsewhere (techreport)

Abstract
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5-pixel products in 16 x 16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.

ei

[BibTex]

[BibTex]


no image
Learning View Graphs for Robot Navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

(33), Max Planck Institute for Biological Cybernetics, Tübingen,, July 1996 (techreport)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

ei

[BibTex]

[BibTex]


Mixture Models for Image Representation
Mixture Models for Image Representation

Jepson, A., Black, M.

PRECARN ARK Project Technical Report ARK96-PUB-54, March 1996 (techreport)

Abstract
We consider the estimation of local greylevel image structure in terms of a layered representation. This type of representation has recently been successfully used to segment various objects from clutter using either optical ow or stereo disparity information. We argue that the same type of representation is useful for greylevel data in that it allows for the estimation of properties for each of several different components without prior segmentation. Our emphasis in this paper is on the process used to extract such a layered representation from a given image In particular we consider a variant of the EM algorithm for the estimation of the layered model and consider a novel technique for choosing the number of layers to use. We briefly consider the use of a simple version of this approach for image segmentation and suggest two potential applications to the ARK project

ps

pdf [BibTex]

pdf [BibTex]


no image
Evaluation of Gaussian Processes and other Methods for Non-Linear Regression

Rasmussen, CE.

Biologische Kybernetik, Graduate Department of Computer Science, Univeristy of Toronto, 1996 (phdthesis)

ei

PostScript [BibTex]

PostScript [BibTex]

1995


no image
A New Method for Constructing Artificial Neural Networks

Vapnik, V., Burges, C., Schölkopf, B.

AT & T Bell Laboratories, 1995 (techreport)

ei

[BibTex]

1995


[BibTex]


no image
test jon
(book)

[BibTex]