Header logo is


1999


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites in DNA

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lemmen, C., Smola, A., Lengauer, T., Müller, K.

In German Conference on Bioinformatics (GCB 1999), October 1999 (inproceedings)

Abstract
In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points from which regions encoding pro­ teins start, the so­called translation initiation sites (TIS). This can be modeled as a classification prob­ lem. We demonstrate the power of support vector machines (SVMs) for this task, and show how to suc­ cessfully incorporate biological prior knowledge by engineering an appropriate kernel function.

ei

Web [BibTex]

1999


Web [BibTex]


no image
Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten

Schölkopf, B., Müller, K., Smola, A.

Informatik - Forschung und Entwicklung, 14(3):154-163, September 1999 (article)

Abstract
We describe recent developments and results of statistical learning theory. In the framework of learning from examples, two factors control generalization ability: explaining the training data by a learning machine of a suitable complexity. We describe kernel algorithms in feature spaces as elegant and efficient methods of realizing such machines. Examples thereof are Support Vector Machines (SVM) and Kernel PCA (Principal Component Analysis). More important than any individual example of a kernel algorithm, however, is the insight that any algorithm that can be cast in terms of dot products can be generalized to a nonlinear setting using kernels. Finally, we illustrate the significance of kernel algorithms by briefly describing industrial and academic applications, including ones where we obtained benchmark record results.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Input space versus feature space in kernel-based methods

Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K., Rätsch, G., Smola, A.

IEEE Transactions On Neural Networks, 10(5):1000-1017, September 1999 (article)

Abstract
This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.07.06
Edges as outliers: Anisotropic smoothing using local image statistics

Black, M. J., Sapiro, G.

In Scale-Space Theories in Computer Vision, Second Int. Conf., Scale-Space ’99, pages: 259-270, LNCS 1682, Springer, Corfu, Greece, September 1999 (inproceedings)

Abstract
Edges are viewed as statistical outliers with respect to local image gradient magnitudes. Within local image regions we compute a robust statistical measure of the gradient variation and use this in an anisotropic diffusion framework to determine a spatially varying "edge-stopping" parameter σ. We show how to determine this parameter for two edge-stopping functions described in the literature (Perona-Malik and the Tukey biweight). Smoothing of the image is related the local texture and in regions of low texture, small gradient values may be treated as edges whereas in regions of high texture, large gradient magnitudes are necessary before an edge is preserved. Intuitively these results have similarities with human perceptual phenomena such as masking and "popout". Results are shown on a variety of standard images.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 07 um 12.35.15
Probabilistic detection and tracking of motion discontinuities

(Marr Prize, Honorable Mention)

Black, M. J., Fleet, D. J.

In Int. Conf. on Computer Vision, ICCV-99, pages: 551-558, ICCV, Corfu, Greece, September 1999 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53.

Davison, T., Vagner, C., Kaghad, M., Ayed, A., Caput, D., CH, ..

Journal of Biological Chemistry, 274(26):18709-18714, June 1999 (article)

Abstract
Mutations in the p53 tumor suppressor gene are the most frequent genetic alterations found in human cancers. Recent identification of two human homologues of p53 has raised the prospect of functional interactions between family members via a conserved oligomerization domain. Here we report in vitro and in vivo analysis of homo- and hetero-oligomerization of p53 and its homologues, p63 and p73. The oligomerization domains of p63 and p73 can independently fold into stable homotetramers, as previously observed for p53. However, the oligomerization domain of p53 does not associate with that of either p73 or p63, even when p53 is in 15-fold excess. On the other hand, the oligomerization domains of p63 and p73 are able to weakly associate with one another in vitro. In vivo co-transfection assays of the ability of p53 and its homologues to activate reporter genes showed that a DNA-binding mutant of p53 was not able to act in a dominant negative manner over wild-type p73 or p63 but that a p73 mutant could inhibit the activity of wild-type p63. These data suggest that mutant p53 in cancer cells will not interact with endogenous or exogenous p63 or p73 via their respective oligomerization domains. It also establishes that the multiple isoforms of p63 as well as those of p73 are capable of interacting via their common oligomerization domain.

ei

Web [BibTex]

Web [BibTex]


no image
Shrinking the tube: a new support vector regression algorithm

Schölkopf, B., Bartlett, P., Smola, A., Williamson, R.

In Advances in Neural Information Processing Systems 11, pages: 330-336 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semiparametric support vector and linear programming machines

Smola, A., Friess, T., Schölkopf, B.

In Advances in Neural Information Processing Systems 11, pages: 585-591 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, Twelfth Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

Abstract
Semiparametric models are useful tools in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. We extend two learning algorithms - Support Vector machines and Linear Programming machines to this case and give experimental results for SV machines.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel PCA and De-noising in feature spaces

Mika, S., Schölkopf, B., Smola, A., Müller, K., Scholz, M., Rätsch, G.

In Advances in Neural Information Processing Systems 11, pages: 536-542 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

Abstract
Kernel PCA as a nonlinear feature extractor has proven powerful as a preprocessing step for classification algorithms. But it can also be considered as a natural generalization of linear principal component analysis. This gives rise to the question how to use nonlinear features for data compression, reconstruction, and de-noising, applications common in linear PCA. This is a nontrivial task, as the results provided by kernel PCA live in some high dimensional feature space and need not have pre-images in input space. This work presents ideas for finding approximate pre-images, focusing on Gaussian kernels, and shows experimental results using these pre-images in data reconstruction and de-noising on toy examples as well as on real world data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots

Balakrishnan, K., Bousquet, O., Honavar, V.

Adaptive Behavior, 7(2):173-216, 1999 (article)

ei

[BibTex]

[BibTex]


no image
SVMs for Histogram Based Image Classification

Chapelle, O., Haffner, P., Vapnik, V.

IEEE Transactions on Neural Networks, (9), 1999 (article)

Abstract
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that Support Vector Machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form $K(mathbf{x},mathbf{y})=e^{-rhosum_i |x_i^a-y_i^a|^{b}}$ with $aleq 1$ and $b leq 2$ are evaluated on the classification of images extracted from the Corel Stock Photo Collection and shown to far outperform traditional polynomial or Gaussian RBF kernels. Moreover, we observed that a simple remapping of the input $x_i rightarrow x_i^a$ improves the performance of linear SVMs to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.

ei

GZIP [BibTex]

GZIP [BibTex]


no image
Classifying LEP data with support vector algorithms.

Vannerem, P., Müller, K., Smola, A., Schölkopf, B., Söldner-Rembold, S.

In Artificial Intelligence in High Energy Nuclear Physics 99, Artificial Intelligence in High Energy Nuclear Physics 99, 1999 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Classification on proximity data with LP-machines

Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K., Obermayer, K., Williamson, R.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 304-309, Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Kernel-dependent support vector error bounds

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 103-108 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Linear programs for automatic accuracy control in regression

Smola, A., Schölkopf, B., Rätsch, G.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 575-580 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Regularized principal manifolds.

Smola, A., Williamson, R., Mika, S., Schölkopf, B.

In Lecture Notes in Artificial Intelligence, Vol. 1572, 1572, pages: 214-229 , Lecture Notes in Artificial Intelligence, (Editors: P Fischer and H-U Simon), Springer, Berlin, Germany, Computational Learning Theory: 4th European Conference, 1999 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Entropy numbers, operators and support vector kernels.

Williamson, R., Smola, A., Schölkopf, B.

In Lecture Notes in Artificial Intelligence, Vol. 1572, 1572, pages: 285-299, Lecture Notes in Artificial Intelligence, (Editors: P Fischer and H-U Simon), Springer, Berlin, Germany, Computational Learning Theory: 4th European Conference, 1999 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Is the Hippocampus a Kalman Filter?

Bousquet, O., Balakrishnan, K., Honavar, V.

In Proceedings of the Pacific Symposium on Biocomputing, 3, pages: 619-630, Proceedings of the Pacific Symposium on Biocomputing, 1999 (inproceedings)

ei

[BibTex]

[BibTex]


no image
A Comparison of Artificial Neural Networks and Cluster Analysis for Typing Biometrics Authentication

Maisuria, K., Ong, CS., Lai, .

In unknown, pages: 9999-9999, International Joint Conference on Neural Networks, 1999 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Fisher discriminant analysis with kernels

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.

In Proceedings of the 1999 IEEE Signal Processing Society Workshop, 9, pages: 41-48, (Editors: Y-H Hu and J Larsen and E Wilson and S Douglas), IEEE, Neural Networks for Signal Processing IX, 1999 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Tele-touch feedback of surfaces at the micro/nano scale: Modeling and experiments

Sitti, M., Horighuchi, S., Hashimoto, H.

In Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, 2, pages: 882-888, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.38.15
Parameterized modeling and recognition of activities

Yacoob, Y., Black, M. J.

Computer Vision and Image Understanding, 73(2):232-247, 1999 (article)

Abstract
In this paper we consider a class of human activities—atomic activities—which can be represented as a set of measurements over a finite temporal window (e.g., the motion of human body parts during a walking cycle) and which has a relatively small space of variations in performance. A new approach for modeling and recognition of atomic activities that employs principal component analysis and analytical global transformations is proposed. The modeling of sets of exemplar instances of activities that are similar in duration and involve similar body part motions is achieved by parameterizing their representation using principal component analysis. The recognition of variants of modeled activities is achieved by searching the space of admissible parameterized transformations that these activities can undergo. This formulation iteratively refines the recognition of the class to which the observed activity belongs and the transformation parameters that relate it to the model in its class. We provide several experiments on recognition of articulated and deformable human motions from image motion parameters.

ps

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


no image
Challenge to micro/nanomanipulation using atomic force microscope

Hashimoto, H., Sitti, M.

In Micromechatronics and Human Science, 1999. MHS’99. Proceedings of 1999 International Symposium on, pages: 35-42, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
< 研究速報>(< 小特集> マイクロマシン)

Sitti, M., 橋本秀紀,

生産研究, 51(8):651-653, 東京大学, 1999 (article)

pi

[BibTex]

[BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.12.47
Explaining optical flow events with parameterized spatio-temporal models

Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’99, pages: 326-332, IEEE, Fort Collins, CO, 1999 (inproceedings)

ps

pdf video [BibTex]

pdf video [BibTex]


no image
Visualization interface for AFM-based nano-manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

In Industrial Electronics, 1999. ISIE’99. Proceedings of the IEEE International Symposium on, 1, pages: 310-315, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro/Nano Manipulation Using Atomic Force Microscope.

Sitti, M., Hashimoto, H.

生産研究, 51(8):651-653, 東京大学生産技術研究所, 1999 (article)

pi

[BibTex]

[BibTex]


no image
Is imitation learning the route to humanoid robots?

Schaal, S.

Trends in Cognitive Sciences, 3(6):233-242, 1999, clmc (article)

Abstract
This review will focus on two recent developments in artificial intelligence and neural computation: learning from imitation and the development of humanoid robots. It will be postulated that the study of imitation learning offers a promising route to gain new insights into mechanisms of perceptual motor control that could ultimately lead to the creation of autonomous humanoid robots. This hope is justified because imitation learning channels research efforts towards three important issues: efficient motor learning, the connection between action and perception, and modular motor control in form of movement primitives. In order to make these points, first, a brief review of imitation learning will be given from the view of psychology and neuroscience. In these fields, representations and functional connections between action and perception have been explored that contribute to the understanding of motor acts of other beings. The recent discovery that some areas in the primate brain are active during both movement perception and execution provided a first idea of the possible neural basis of imitation. Secondly, computational approaches to imitation learning will be described, initially from the perspective of traditional AI and robotics, and then with a focus on neural network models and statistical learning research. Parallels and differences between biological and computational approaches to imitation will be highlighted. The review will end with an overview of current projects that actually employ imitation learning for humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Tele-nanorobotics 2-d manipulation of micro/nanoparticles using afm

Sitti, M., Horiguchi, S., Hashimoto, H.

In Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, pages: 786-786, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Virtual Reality-Based Teleoperation in the Micro/Nano World.

Sitti, M., Hashimoto, H.

生産研究, 51(8):654-656, 東京大学生産技術研究所, 1999 (article)

pi

[BibTex]

[BibTex]


no image
Segmentation of endpoint trajectories does not imply segmented control

Sternad, D., Schaal, D.

Experimental Brain Research, 124(1):118-136, 1999, clmc (article)

Abstract
While it is generally assumed that complex movements consist of a sequence of simpler units, the quest to define these units of action, or movement primitives, still remains an open question. In this context, two hypotheses of movement segmentation of endpoint trajectories in 3D human drawing movements are re-examined: (1) the stroke-based segmentation hypothesis based on the results that the proportionality coefficient of the 2/3 power law changes discontinuously with each new â??strokeâ?, and (2) the segmentation hypothesis inferred from the observation of piecewise planar endpoint trajectories of 3D drawing movements. In two experiments human subjects performed a set of elliptical and figure-8 patterns of different sizes and orientations using their whole arm in 3D. The kinematic characteristics of the endpoint trajectories and the seven joint angles of the arm were analyzed. While the endpoint trajectories produced similar segmentation features as reported in the literature, analyses of the joint angles show no obvious segmentation but rather continuous oscillatory patterns. By approximating the joint angle data of human subjects with sinusoidal trajectories, and by implementing this model on a 7-degree-of-freedom anthropomorphic robot arm, it is shown that such a continuous movement strategy can produce exactly the same features as observed by the above segmentation hypotheses. The origin of this apparent segmentation of endpoint trajectories is traced back to the nonlinear transformations of the forward kinematics of human arms. The presented results demonstrate that principles of discrete movement generation may not be reconciled with those of rhythmic movement as easily as has been previously suggested, while the generalization of nonlinear pattern generators to arm movements can offer an interesting alternative to approach the question of units of action.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Two-dimensional fine particle positioning using a piezoresistive cantilever as a micro/nano-manipulator

Sitti, M., Hashimoto, H.

In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, 4, pages: 2729-2735, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Teleoperated nano scale object manipulation

Sitti, M., Hashimoto, H.

Recent Advances on Mechatronics, pages: 322-335, Singapore: Springer-Verlag, 1999 (article)

pi

[BibTex]

[BibTex]


Thumb xl teaser 1
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

[BibTex]


[BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl gpcr cons
Classified Regression for Bayesian Optimization: Robot Learning with Unknown Penalties

Marco, A., Baumann, D., Hennig, P., Trimpe, S.

Submitted to Journal (under review) (article)

Abstract
Learning robot controllers by minimizing a black-box objective cost using Bayesian optimization (BO) can be time-consuming and challenging. It is very often the case that some roll-outs result in failure behaviors, causing premature experiment detention. In such cases, the designer is forced to decide on heuristic cost penalties because the acquired data is often scarce, or not comparable with that of the stable policies. To overcome this, we propose a Bayesian model that captures exactly what we know about the cost of unstable controllers prior to data collection: Nothing, except that it should be a somewhat large number. The resulting Bayesian model, approximated with a Gaussian process, predicts high cost values in regions where failures are likely to occur. In this way, the model guides the BO exploration toward regions of stability. We demonstrate the benefits of the proposed model in several illustrative and statistical synthetic benchmarks, and also in experiments on a real robotic platform. In addition, we propose and experimentally validate a new BO method to account for unknown constraints. Such method is an extension of Max-Value Entropy Search, a recent information-theoretic method, to solve unconstrained global optimization problems.

PDF link (url) [BibTex]


no image
test
(article)

[BibTex]

[BibTex]


no image
Geometric Image Synthesis

Alhaija, H. A., Mustikovela, S. K., Geiger, A., Rother, C.

(conference)

avg

Project Page [BibTex]

Project Page [BibTex]


no image
textes
(article)

mms

[BibTex]

[BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]