Header logo is


2014


no image
Haptic Robotization of Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Takei, S., Nakai, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Entertainment Computing, 5(4):485-494, December 2014 (article)

hi

[BibTex]

2014


[BibTex]


Series of Multilinked Caterpillar Track-type Climbing Robots
Series of Multilinked Caterpillar Track-type Climbing Robots

Lee, G., Kim, H., Seo, K., Kim, J., Sitti, M., Seo, T.

Journal of Field Robotics, November 2014 (article)

Abstract
Climbing robots have been widely applied in many industries involving hard to access, dangerous, or hazardous environments to replace human workers. Climbing speed, payload capacity, the ability to overcome obstacles, and wall-to-wall transitioning are significant characteristics of climbing robots. Here, multilinked track wheel-type climbing robots are proposed to enhance these characteristics. The robots have been developed for five years in collaboration with three universities: Seoul National University, Carnegie Mellon University, and Yeungnam University. Four types of robots are presented for different applications with different surface attachment methods and mechanisms: MultiTank for indoor sites, Flexible caterpillar robot (FCR) and Combot for heavy industrial sites, and MultiTrack for high-rise buildings. The method of surface attachment is different for each robot and application, and the characteristics of the joints between links are designed as active or passive according to the requirement of a given robot. Conceptual design, practical design, and control issues of such climbing robot types are reported, and a proper choice of the attachment methods and joint type is essential for the successful multilink track wheel-type climbing robot for different surface materials, robot size, and computational costs.

pi

DOI [BibTex]

DOI [BibTex]


Segmented molecular design of self-healing proteinaceous materials.
Segmented molecular design of self-healing proteinaceous materials.

Sariola, V., Pena-Francesch, A., Jung, H., Çetinkaya, M., Pacheco, C., Sitti, M., Demirel, M. C.

Scientific reports, 5, pages: 13482-13482, Nature Publishing Group, July 2014 (article)

Abstract
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

pi

DOI [BibTex]

DOI [BibTex]


no image
Modeling and Rendering Realistic Textures from Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 7(3):381-292, July 2014 (article)

hi

[BibTex]

[BibTex]


Bio-Hybrid Cell-Based Actuators for Microsystems
Bio-Hybrid Cell-Based Actuators for Microsystems

Carlsen, R. W., Sitti, M.

Small, 10(19):3831-3851, June 2014 (article)

Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

pi

DOI [BibTex]

DOI [BibTex]


{Detecting magnetic flux distributions in superconductors with polarized x-rays}
Detecting magnetic flux distributions in superconductors with polarized x-rays

Stahl, C., Audehm, P., Gräfe, J., Ruoß, S., Weigand, M., Schmidt, M., Treiber, S., Bechtel, M., Goering, E., Schütz, G., Albrecht, J.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

Abstract
The magnetic flux distribution arising from a high-Tc superconductor is detected and visualized using polarized x rays. Therefore, we introduce a sensor layer, namely, an amorphous, soft-magnetic Co40Fe40B20 cover layer, providing a large x-ray magnetic circular dichroism (XMCD). Temperature-dependent XMCD spectroscopy on the magnetic layer has been performed. Exploiting the temperature dependence of the critical current density of the superconductor we find a quantitative correlation between the XMCD signal and the in-plane stray field of the superconductor. Magneto-optical Kerr effect experiments on the sensor layer can simulate the stray field of the superconductor and hence verify the correlation. We show that the XMCD contrast in the sensor layer corresponds to the in-plane magnetic flux distribution of the superconductor and can hence be used to image magnetic structures in superconductors.

mms

DOI [BibTex]

DOI [BibTex]


{Application of magneto-optical Kerr effect to first-order reversal curve measurements}
Application of magneto-optical Kerr effect to first-order reversal curve measurements

Gräfe, J., Schmidt, M., Audehm, P., Schütz, G., Goering, E.

{Review of Scientific Instruments}, 85, American Institute of Physics, Woodbury, N.Y. [etc.], 2014 (article)

Abstract
First-order reversal curves (FORC) are a powerful method for magnetic sample characterization, separating all magnetic states of an investigated system according to their coercivity and internal magnetic interactions. A major drawback of using measurement techniques like VSM or SQUID, typically applied for FORC acquisition, is the long measurement time, limiting the resolution and the number of measurements due to time constraints. Faster techniques like MOKE result in problems regarding measurement stability over the curse of the acquisition of many minor loops, due to drift and non-absolute magnetization values. Here, we present an approach using a specialized field shape providing two anchor points for each minor loop for applying the magneto-optical Kerr effect (MOKE) technique to FORC measurements. This results in a high field resolution while keeping the total acquisition time to only a few minutes. MOKE FORC measurements are exemplarily applied to a simple permalloy film, an exchange-bias system, and a Gd/Fe multilayer system with perpendicular magnetic anisotropy, showcasing the versatility of the method.

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming
Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming

Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R., Sitti, M.

Applied Physics Letters, 104(17):174101, AIP, 2014 (article)

Abstract
We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for microrobotics applications in biotechnology and healthcare

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bio-Hybrid Cell-Based Actuators for Microsystems

Carlsen, Rika Wright, Sitti, Metin

Small, 10(19):3831-3851, 2014 (article)

Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

pi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Continuous electrowetting of non-toxic liquid metal for RF applications

Gough, R. C., Morishita, A. M., Dang, J. H., Hu, W., Shiroma, W. A., Ohta, A. T.

IEEE Access, 2, pages: 874-882, IEEE, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Laser-induced microbubble poration of localized single cells

Fan, Q., Hu, W., Ohta, A. T.

Lab on a Chip, 14(9):1572-1578, Royal Society of Chemistry, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing and Retrieving Untethered Micro-Grippers

Yim, S., Gultepe, E., Gracias, D. H., Sitti, M.

IEEE Trans. on Biomedical Engineering, 61(2):513-521, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Investigation of tip current and normal force measured simultaneously during local oxidation of titanium using dual-mode scanning probe microscopy

Ozcan, O., Hu, W., Sitti, M., Bain, J., Ricketts, D.

IET Micro \& Nano Letters, 9(5):332-336, IET, 2014 (article)

pi

[BibTex]

[BibTex]


no image
SoftCubes: Stretchable and self-assembling three-dimensional soft modular matter

Yim, S., Sitti, M.

The International Journal of Robotics Research, 33(8):1083-1097, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

Pöhlker, C., Saturno, J., Krüger, M. L., Förster, J. D., Weigand, M., Wiedemann, K. T., Bechtel, M., Artaxo, P., Andreae, M. O.

{Geophysical Research Letters}, 41(10):3681-3689, American Geophysical Union, Washington, D.C., 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of cellular microstructure and enhanced coercivity in sputtered Sm2(CoCuFeZr)17 film

Bhatt, R., Bhatt, P., Schütz, G.

{Journal of Applied Physics}, 115(10), American Institute of Physics, New York, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spatial degradation mapping and component-wise degradation tracking in polymer-fullerene blends

Pedersen, E. B. B., Tromholt, T., Madsen, M. V., Böttiger, A. P. L., Weigand, M., Krebs, F. C., Andreasen, J. W.

{Journal of Materials Chemistry C}, 2(26):5176-5182, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Vortex core reversal due to spin wave interference

Bauer, H. G., Sproll, M., Back, C. H., Woltersdorf, G.

{Physical Review Letters}, 112, American Physical Society, Woodbury, N.Y., 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8

Magdysyuk, O. V., Adams, F., Liermann, H., Spanopoulos, I., Trikalitis, P. N., Hirscher, M., Morris, R. E., Duncan, M. J., McCormick, L. J., Dinnebier, R. E.

{Physical Chemistry Chemical Physics}, 16(43):23908-23914, Royal Society of Chemistry, Cambridge, England, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Staying sticky: contact self-cleaning of gecko-inspired adhesives

Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H., Sitti, M.

Journal of The Royal Society Interface, 11(94):20131205, The Royal Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic Trapping and Two-Dimensional Transport of Swimming Microorganisms Using a Rotating Magnetic Micro-Robot

Ye, Z., Sitti, M.

Lab on a Chip, 14(13):2177-2182, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]


no image
STRIDE II: a water strider-inspired miniature robot with circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

International Journal of Advanced Robotic Systems, 11(6):85, SAGE Publications Sage UK: London, England, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing

Song, S., Sitti, M.

Advanced Materials, 26(28):4901-4906, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Unidirectional sub-100-ps magnetic vortex core reversal

Noske, M., Gangwar, A., Stoll, H., Kammerer, M., Sproll, M., Dieterle, G., Weigand, M., Fähnle, M., Woltersdorf, G., Back, C. H., Schütz, G.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall transformations and hopping in La0.7Sr0.3MnO3 nanostructures imaged with high resolution x-ray magnetic microscopy

Finizio, S., Foerster, M., Krüger, B., Vaz, C. A. F., Miyawaki, T., Mawass, M. A., Pena, L., Méchin, L., Hühn, S., Moshnyaga, V., Büttner, F., Bisig, A., Le Guyader, L., El Moussaoui, S., Valencia, S., Kronast, F., Eisebitt, S., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(45), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable eigenmodes of coupled magnetic vortex oscillators

Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Applied Physics Letters}, 104(18), American Institute of Physics, Melville, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall pinning in ultra-narrow electromigrated break junctions

Reeve, R. M., Loescher, A., Mawass, M.-A., Hoffmann-Vogel, R., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(47), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Highly effective hydrogen isotope separation in nanoporous metal-organic framworks with open metal sites: Direct measurement and theoretical analysis

Oh, H., Savchenko, I., Mavrandonakis, A., Heine, T., Hirscher, M.

{ACS Nano}, 8(1):761-770, American Chemical Society, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stabilization of the dissipation-free current transport in inhomogeneous MgB2 thin films

Treiber, S., Stahl, C., Schütz, G., Soltan, S., Albrecht, J.

{Physica C}, 506, pages: 1-5, North-Holland, Amsterdam, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Thermal conductivity of mechanically joined semiconducting/metal nanomembrane superlattices

Grimm, D., Wilson, R. B., Teshome, B., Gorantla, S., Rümmeli, M. H., Bublat, T., Zallo, E., Li, G., Cahill, D. G., Schmidt, O. G.

{Nano Letters}, 14(5):2387-2393, American Chemical Society, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Can DC motors directly drive flapping wings at high frequency and large wing strokes?

Campolo, D., Azhar, M., Lau, G., Sitti, M.

IEEE/ASME Trans. on Mechatronics, 19(1):109-120, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Magnetic steering control of multi-cellular bio-hybrid microswimmers

Carlsen, R. W., Edwards, M. R., Zhuang, J., Pacoret, C., Sitti, M.

Lab on a Chip, 14(19):3850-3859, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Analytical modeling and experimental characterization of chemotaxis in serratia marcescens

Zhuang, J., Wei, G., Carlsen, R. W., Edwards, M. R., Marculescu, R., Bogdan, P., Sitti, M.

Physical Review E, 89(5):052704, American Physical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics

Edwards, M. R., Carlsen, R. W., Zhuang, J., Sitti, M.

Journal of Micro-Bio Robotics, 9(3):47-60, Springer Berlin Heidelberg, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Influence of Magnetic Fields on Magneto-Aerotaxis

Bennet, M., McCarthy, A., Fix, D., Edwards, M. R., Repp, F., Vach, P., Dunlop, J. W., Sitti, M., Buller, G. S., Klumpp, S., others,

PLoS One, 9(7):e101150, Public Library of Science, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Role of the sample boundaries in the problem of dissipative magnetization dynamics

Fähnle, M., Slavin, A., Hertel, R.

{Journal of Magnetism and Magnetic Materials}, 360, pages: 126-130, Elsevier, Amsterdam, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Using magnetic coupling in bilayers of superconducting YBCO and soft-magnetic CoFeB to map supercurrent flow

Stahl, C., Walker, P., Treiber, S., Christiani, G., Schütz, G., Albrecht, J.

{EPL}, 106(2), 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-specific depth profile of magnetism and stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 interface

Bertinshaw, J., Brück, S., Lott, D., Fritzsche, H., Khaydukov, Y., Soltwedel, O., Keller, T., Goering, E., Audehm, P., Cortie, D. L., Hutchison, W. D., Ramasse, Q. M., Arredondo, M., Maran, R., Nagarajan, V., Klose, F., Ulrich, C.

{Physical Review B}, 90(4), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic reflectometry of heterostructures (Topical Review)

Macke, S., Goering, E.

{Journal of Physics: Condensed Matter}, 26(36), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Optimizing the fabrication of diffractive optical elements using a focused ion beam system

Vijayakumar, A., Eigenthaler, U., Keskinbora, K., Sridharan, G. M., Pramitha, V., Hirscher, M., Spatz, J. P., Bhattacharya, S.

{Proceedings of SPIE}, 9130, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of internal vortex domain-wall dynamics

Stein, F.-U., Bocklage, L., Weigand, M., Meier, G.

{Physical Review B}, 89(2), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses

Kim, J., Mawass, M., Bisig, A., Krüger, B., Reeve, R. M., Schulz, T., Büttner, F., Yoon, J., You, C., Weigand, M., Stoll, H., Schütz, G., Swagten, H. J. M., Koopmans, B., Eisebitt, S., Kläui, M.

{Nature Communications}, 5, Nature Publishing Group, London, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance

Hines, L., Campolo, D., Sitti, M.

IEEE Trans. on Robotics, 30(1):220-232, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Untethered micro-robotic coding of three-dimensional material composition

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

Nature Communications, 5, pages: DOI-10, Nature Publishing Group, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

Aksak, B., Sahin, K., Sitti, M.

Beilstein journal of nanotechnology, 5(1):630-638, Beilstein-Institut, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Mechanically Switchable Elastomeric Microfibrillar Adhesive Surfaces for Transfer Printing

Sariola, V., Sitti, M.

Advanced Materials Interfaces, 1(4):1300159, 2014 (article)

pi

[BibTex]

[BibTex]


no image
MultiMo-Bat: A biologically inspired integrated jumping–gliding robot

Woodward, M. A., Sitti, M.

The International Journal of Robotics Research, 33(12):1511-1529, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Magnetic field distribution and characteristic fields of the vortex lattice for a clean superconducting niobium sample in an external field applied along a three-fold axis

Yaouanc, A., Maisuradze, A., Nakai, N., Machida, K., Khasanov, R., Amato, A., Biswas, P. K., Baines, C., Herlach, D., Henes, Rolf, Keppler, P., Keller, H.

{Physical Review B}, 89(18), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Experimental assessment of Physical upper limit for hydrogen storage capacity at 20 K in densified MIL-101 monoliths

Oh, H., Lupu, D., Blanita, G., Hirscher, M.

{RSC Advances}, 4(6):2648-2651, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Strengthening zones in the Co matrix of WC-Co cemented carbides

Konyashin, I., Lachmann, F., Ries, B., Mazilkin, A. A., Straumal, B. B., Kübel, C., Llanes, L., Baretzky, B.

{Scripta Materialia}, 83, pages: 17-20, Pergamon, Tarrytown, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]