Header logo is


2018


Co-Registration -- Simultaneous Alignment and Modeling of Articulated {3D} Shapes
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schökopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

ei

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]

2016


Skinned multi-person linear model
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


no image
Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)

ei

[BibTex]

[BibTex]


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

ei

pdf [BibTex]

pdf [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

ei

[BibTex]

[BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2012


no image
Expectation-Maximization methods for solving (PO)MDPs and optimal control problems

Toussaint, M., Storkey, A., Harmeling, S.

In Inference and Learning in Dynamic Models, (Editors: Barber, D., Cemgil, A.T. and Chiappa, S.), Cambridge University Press, Cambridge, UK, January 2012 (inbook) In press

ei

PDF [BibTex]

2012


PDF [BibTex]


no image
Inferential structure determination from NMR data

Habeck, M.

In Bayesian methods in structural bioinformatics, pages: 287-312, (Editors: Hamelryck, T., Mardia, K. V. and Ferkinghoff-Borg, J.), Springer, New York, 2012 (inbook)

ei

[BibTex]

[BibTex]


no image
Robot Learning

Sigaud, O., Peters, J.

In Encyclopedia of the sciences of learning, (Editors: Seel, N.M.), Springer, Berlin, Germany, 2012 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning in Robotics: A Survey

Kober, J., Peters, J.

In Reinforcement Learning, 12, pages: 579-610, (Editors: Wiering, M. and Otterlo, M.), Springer, Berlin, Germany, 2012 (inbook)

Abstract
As most action generation problems of autonomous robots can be phrased in terms of sequential decision problems, robotics offers a tremendously important and interesting application platform for reinforcement learning. Similarly, the real-world challenges of this domain pose a major real-world check for reinforcement learning. Hence, the interplay between both disciplines can be seen as promising as the one between physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement learning are sufficiently tied to robotics to oversee most problems encountered in this context. Thus, we will bring the most important challenges faced by robot reinforcement learning to their attention. To achieve this goal, we will attempt to survey most work that has successfully applied reinforcement learning to behavior generation for real robots. We discuss how the presented successful approaches have been made tractable despite the complexity of the domain and will study how representations or the inclusion of prior knowledge can make a significant difference. As a result, a particular focus of our chapter lies on the choice between model-based and model-free as well as between value function-based and policy search methods. As a result, we obtain a fairly complete survey of robot reinforcement learning which should allow a general reinforcement learning researcher to understand this domain.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Machine Learning and Interpretation in Neuroimaging - Revised Selected and Invited Contributions

Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B.

pages: 266, Springer, Heidelberg, Germany, International Workshop, MLINI, Held at NIPS, 2012, Lecture Notes in Computer Science, Vol. 7263 (proceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Higher-Order Tensors in Diffusion MRI

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, (Editors: Westin, C. F., Vilanova, A. and Burgeth, B.), Springer, 2012 (inbook) Accepted

ei

[BibTex]

[BibTex]


no image
MICCAI, Workshop on Computational Diffusion MRI, 2012 (electronic publication)

Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.

15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI , 2012 (proceedings)

ei

PDF [BibTex]

PDF [BibTex]


An Introduction to Random Forests for Multi-class Object Detection
An Introduction to Random Forests for Multi-class Object Detection

Gall, J., Razavi, N., van Gool, L.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 243-263, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

ps

code code for Hough forest publisher's site pdf Project Page [BibTex]

code code for Hough forest publisher's site pdf Project Page [BibTex]


Home {3D} body scans from noisy image and range data
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pages: 99-118, 6, (Editors: Andrea Fossati and Juergen Gall and Helmut Grabner and Xiaofeng Ren and Kurt Konolige), Springer-Verlag, 2012 (incollection)

ps

Project Page [BibTex]

Project Page [BibTex]


Consumer Depth Cameras for Computer Vision - Research Topics and Applications
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]

2008


no image
CogRob 2008: The 6th International Cognitive Robotics Workshop

Lespérance, Y., Lakemeyer, G., Peters, J., Pirri, F.

Proceedings of the 6th International Cognitive Robotics Workshop (CogRob 2008), pages: 35, Patras University Press, Patras, Greece, 6th International Cognitive Robotics Workshop (CogRob), July 2008 (proceedings)

ei

Web [BibTex]

2008


Web [BibTex]


no image
New Frontiers in Characterizing Structure and Dynamics by NMR

Nilges, M., Markwick, P., Malliavin, TE., Rieping, W., Habeck, M.

In Computational Structural Biology: Methods and Applications, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both the structure and the dynamics of biological macromolecule in solution. Despite the maturity of the NMR method for structure determination, its application faces a number of challenges. The method is limited to systems of relatively small molecular mass, data collection times are long, data analysis remains a lengthy procedure, and it is difficult to evaluate the quality of the final structures. The last years have seen significant advances in experimental techniques to overcome or reduce some limitations. The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time–scales from picoseconds to seconds. NMR is unique in its ability to obtain dynamic information on an atomic scale. The experimental information on structure and dynamics is intricately mixed. It is however difficult to unite both structural and dynamical information into one consistent model, and protocols for the determination of structure and dynamics are performed independently. This chapter deals with the challenges posed by the interpretation of NMR data on structure and dynamics. We will first relate the standard structure calculation methods to Bayesian probability theory. We will then briefly describe the advantages of a fully Bayesian treatment of structure calculation. Then, we will illustrate the advantages of using Bayesian reasoning at least partly in standard structure calculations. The final part will be devoted to interpretation of experimental data on dynamics.

ei

Web [BibTex]

Web [BibTex]


no image
A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs

Franz, MO., Stürzl, W., Reichardt, W., Mallot, HA.

In Robotics and Cognitive Approaches to Spatial Mapping, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

Abstract
Complex navigation behaviour (way-finding) involves recognizing several places and encoding a spatial relationship between them. Way-finding skills can be classified into a hierarchy according to the complexity of the tasks that can be performed [8]. The most basic form of way-finding is route navigation, followed by topological navigation where several routes are integrated into a graph-like representation. The highest level, survey navigation, is reached when this graph can be embedded into a common reference frame. In this chapter, we present the building blocks for a biomimetic robot navigation system that encompasses all levels of this hierarchy. As a local navigation method, we use scene-based homing. In this scheme, a goal location is characterized either by a panoramic snapshot of the light intensities as seen from the place, or by a record of the distances to the surrounding objects. The goal is found by moving in the direction that minimizes the discrepancy between the recorded intensities or distances and the current sensory input. For learning routes, the robot selects distinct views during exploration that are close enough to be reached by snapshot-based homing. When it encounters already visited places during route learning, it connects the routes and thus forms a topological representation of its environment termed a view graph. The final stage, survey navigation, is achieved by a graph embedding procedure which complements the topologic information of the view graph with odometric position estimates. Calculation of the graph embedding is done with a modified multidimensional scaling algorithm which makes use of distances and angles between nodes.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]