Header logo is


2016


no image
Helping people make better decisions using optimal gamification

Lieder, F., Griffiths, T. L.

In Proceedings of the 38th Annual Conference of the Cognitive Science Society, 2016 (inproceedings)

Abstract
Game elements like points and levels are a popular tool to nudge and engage students and customers. Yet, no theory can tell us which incentive structures work and how to design them. Here we connect the practice of gamification to the theory of reward shaping in reinforcement learning. We leverage this connection to develop a method for designing effective incentive structures and delineating when gamification will succeed from when it will fail. We evaluate our method in two behavioral experiments. The results of the first experiment demonstrate that incentive structures designed by our method help people make better, less short-sighted decisions and avoid the pitfalls of less principled approaches. The results of the second experiment illustrate that such incentive structures can be effectively implemented using game elements like points and badges. These results suggest that our method provides a principled way to leverage gamification to help people make better decisions.

re

link (url) Project Page [BibTex]

2016


link (url) Project Page [BibTex]

2015


no image
When to use which heuristic: A rational solution to the strategy selection problem

Lieder, F., Griffiths, T. L.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

Abstract
The human mind appears to be equipped with a toolbox full of cognitive strategies, but how do people decide when to use which strategy? We leverage rational metareasoning to derive a rational solution to this problem and apply it to decision making under uncertainty. The resulting theory reconciles the two poles of the debate about human rationality by proposing that people gradually learn to make rational use of fallible heuristics. We evaluate this theory against empirical data and existing accounts of strategy selection (i.e. SSL and RELACS). Our results suggest that while SSL and RELACS can explain people's ability to adapt to homogeneous environments in which all decision problems are of the same type, rational metareasoning can additionally explain people's ability to adapt to heterogeneous environments and flexibly switch strategies from one decision to the next.

re

link (url) Project Page [BibTex]

2015


link (url) Project Page [BibTex]


no image
Children and Adults Differ in their Strategies for Social Learning

Lieder, F., Sim, Z. L., Hu, J. C., Griffiths, T. L., Xu, F.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

Abstract
Adults and children rely heavily on other people’s testimony. However, domains of knowledge where there is no consensus on the truth are likely to result in conflicting testimonies. Previous research has demonstrated that in these cases, learners look towards the majority opinion to make decisions. However, it remains unclear how learners evaluate social information, given that considering either the overall valence, or the number of testimonies, or both may lead to different conclusions. We therefore formalized several social learning strategies and compared them to the performance of adults and children. We find that children use different strategies than adults. This suggests that the development of social learning may involve the acquisition of cognitive strategies.

re

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from others: Adult and child strategies in assessing conflicting ratings

Hu, J., Lieder, F., Griffiths, T. L., Xu, F.

In Biennial Meeting of the Society for Research in Child Development, Philadelphia, Pennsylvania, USA, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Utility-weighted sampling in decisions from experience

Lieder, F., Griffiths, T. L., Hsu, M.

In The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (inproceedings)

re

[BibTex]

[BibTex]

2013


no image
Controllability and Resource-Rational Planning

Lieder, F., Goodman, N. D., Huys, Q. J.

In Computational and Systems Neuroscience (Cosyne), pages: 112, 2013 (inproceedings)

Abstract
Learned helplessness experiments involving controllable vs. uncontrollable stressors have shown that the perceived ability to control events has profound consequences for decision making. Normative models of decision making, however, do not naturally incorporate knowledge about controllability, and previous approaches to incorporating it have led to solutions with biologically implausible computational demands [1,2]. Intuitively, controllability bounds the differential rewards for choosing one strategy over another, and therefore believing that the environment is uncontrollable should reduce one’s willingness to invest time and effort into choosing between options. Here, we offer a normative, resource-rational account of the role of controllability in trading mental effort for expected gain. In this view, the brain not only faces the task of solving Markov decision problems (MDPs), but it also has to optimally allocate its finite computational resources to solve them efficiently. This joint problem can itself be cast as a MDP [3], and its optimal solution respects computational constraints by design. We start with an analytic characterisation of the influence of controllability on the use of computational resources. We then replicate previous results on the effects of controllability on the differential value of exploration vs. exploitation, showing that these are also seen in a cognitively plausible regime of computational complexity. Third, we find that controllability makes computation valuable, so that it is worth investing more mental effort the higher the subjective controllability. Fourth, we show that in this model the perceived lack of control (helplessness) replicates empirical findings [4] whereby patients with major depressive disorder are less likely to repeat a choice that led to a reward, or to avoid a choice that led to a loss. Finally, the model makes empirically testable predictions about the relationship between reaction time and helplessness.

re

[BibTex]

2013


[BibTex]


no image
Learned helplessness and generalization

Lieder, F., Goodman, N. D., Huys, Q. J. M.

In 35th Annual Conference of the Cognitive Science Society, 2013 (inproceedings)

re

[BibTex]

[BibTex]


no image
Reverse-Engineering Resource-Efficient Algorithms

Lieder, F., Goodman, N. D., Griffiths, T. L.

In NIPS Workshop Resource-Efficient Machine Learning, 2013 (inproceedings)

re

[BibTex]

[BibTex]