Header logo is


2018


Thumb xl screenshot 2018 5 9 swimming back and forth using planar flagellar propulsion at low reynolds numbers   khalil   2018   adv ...
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Mitwally, M. E., Tawakol, M., Klingner, A., Sitti, M.

Advanced Science, 5(2):1700461, 2018 (article)

Abstract
Abstract Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two‐tailed microrobot capable of reversing its swimming direction without making a U‐turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

pi

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


no image
Non-factorised Variational Inference in Dynamical Systems

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

1st Symposion on Advances in Approximate Bayesian Inference, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Enhancing the Accuracy and Fairness of Human Decision Making

Valera, I., Singla, A., Gomez Rodriguez, M.

Advances in Neural Information Processing Systems 31, pages: 1774-1783, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Consolidating the Meta-Learning Zoo: A Unifying Perspective as Posterior Predictive Inference

Gordon*, J., Bronskill*, J., Bauer*, M., Nowozin, S., Turner, R. E.

Workshop on Meta-Learning (MetaLearn 2018) at the 32nd Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Versa: Versatile and Efficient Few-shot Learning

Gordon*, J., Bronskill*, J., Bauer*, M., Nowozin, S., Turner, R. E.

Third Workshop on Bayesian Deep Learning at the 32nd Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DP-MAC: The Differentially Private Method of Auxiliary Coordinates for Deep Learning

Harder, F., Köhler, J., Welling, M., Park, M.

Workshop on Privacy Preserving Machine Learning at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Boosting Black Box Variational Inference

Locatello*, F., Dresdner*, G., R., K., Valera, I., Rätsch, G.

Advances in Neural Information Processing Systems 31, pages: 3405-3415, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018, *equal contribution (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Deep Nonlinear Non-Gaussian Filtering for Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

Third Workshop on Bayesian Deep Learning at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Invariances using the Marginal Likelihood

van der Wilk, M., Bauer, M., John, S. T., Hensman, J.

Advances in Neural Information Processing Systems 31, pages: 9960-9970, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Data-Efficient Hierarchical Reinforcement Learning

Nachum, O., Gu, S., Lee, H., Levine, S.

Advances in Neural Information Processing Systems 31, pages: 3307-3317, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Generalisation in humans and deep neural networks

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H., Bethge, M., Wichmann, F. A.

Advances in Neural Information Processing Systems 31, pages: 7549-7561, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex

Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.

Communications Biology, 1(215):1-12, December 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
A Computational Camera with Programmable Optics for Snapshot High Resolution Multispectral Imaging

Chen, J., Hirsch, M., Eberhardt, B., Lensch, H. P. A.

Computer Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, December 2018 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

Neitz, A., Parascandolo, G., Bauer, S., Schölkopf, B.

Advances in Neural Information Processing Systems 31, pages: 9838-9848, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Thumb xl 2018 prd
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Advances in Neural Information Processing Systems 31, pages: 5234-5243, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Thumb xl unbenannte pr%c3%a4sentation 1
Efficient Encoding of Dynamical Systems through Local Approximations

Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)

ei ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Flex-Convolution (Million-Scale Point-Cloud Learning Beyond Grid-Worlds)

Groh*, F., Wieschollek*, P., Lensch, H. P. A.

Computer Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, December 2018, *equal contribution (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Bayesian Nonparametric Hawkes Processes

Kapoor, J., Vergari, A., Gomez Rodriguez, M., Valera, I.

Bayesian Nonparametrics workshop at the 32nd Conference on Neural Information Processing Systems, December 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Informative Features for Model Comparison

Jitkrittum, W., Kanagawa, H., Sangkloy, P., Hays, J., Schölkopf, B., Gretton, A.

Advances in Neural Information Processing Systems 31, pages: 816-827, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 32nd Annual Conference on Neural Information Processing Systems, December 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl universal custom complex magnetic spring design methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl sevillagcpr
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Regularizing Reinforcement Learning with State Abstraction

Akrour, R., Veiga, F., Peters, J., Neuman, G.

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018 (conference) Accepted

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl iros18
Towards Robust Visual Odometry with a Multi-Camera System

Liu, P., Geppert, M., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In International Conference on Intelligent Robots and Systems (IROS) 2018, International Conference on Intelligent Robots and Systems, October 2018 (inproceedings)

Abstract
We present a visual odometry (VO) algorithm for a multi-camera system and robust operation in challenging environments. Our algorithm consists of a pose tracker and a local mapper. The tracker estimates the current pose by minimizing photometric errors between the most recent keyframe and the current frame. The mapper initializes the depths of all sampled feature points using plane-sweeping stereo. To reduce pose drift, a sliding window optimizer is used to refine poses and structure jointly. Our formulation is flexible enough to support an arbitrary number of stereo cameras. We evaluate our algorithm thoroughly on five datasets. The datasets were captured in different conditions: daytime, night-time with near-infrared (NIR) illumination and night-time without NIR illumination. Experimental results show that a multi-camera setup makes the VO more robust to challenging environments, especially night-time conditions, in which a single stereo configuration fails easily due to the lack of features.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Learning to Categorize Bug Reports with LSTM Networks

Gondaliya, K., Peters, J., Rueckert, E.

Proceedings of the 10th International Conference on Advances in System Testing and Validation Lifecycle (VALID), pages: 7-12, October 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment

Muratore, F., Treede, F., Gienger, M., Peters, J.

2nd Annual Conference on Robot Learning (CoRL), 87, pages: 700-713, Proceedings of Machine Learning Research, PMLR, October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning of Phase Oscillators for Fast Adaptation to Moving Targets

Maeda, G., Koc, O., Morimoto, J.

Proceedings of The 2nd Conference on Robot Learning (CoRL), 87, pages: 630-640, (Editors: Aude Billard, Anca Dragan, Jan Peters, Jun Morimoto ), PMLR, October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 12.05.00
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

ei

RAL18final link (url) DOI Project Page [BibTex]

RAL18final link (url) DOI Project Page [BibTex]


no image
Constraint-Space Projection Direct Policy Search

Akrour, R., Peters, J., Neuman, G.

14th European Workshop on Reinforcement Learning (EWRL), October 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Spatio-temporal Transformer Network for Video Restoration

Kim, T. H., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

15th European Conference on Computer Vision (ECCV), Part III, 11207, pages: 111-127, Lecture Notes in Computer Science, (Editors: Vittorio Ferrari, Martial Hebert,Cristian Sminchisescu and Yair Weiss), Springer, September 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl ianeccv18
Learning Priors for Semantic 3D Reconstruction

Cherabier, I., Schönberger, J., Oswald, M., Pollefeys, M., Geiger, A.

In Computer Vision – ECCV 2018, Springer International Publishing, Cham, September 2018 (inproceedings)

Abstract
We present a novel semantic 3D reconstruction framework which embeds variational regularization into a neural network. Our network performs a fixed number of unrolled multi-scale optimization iterations with shared interaction weights. In contrast to existing variational methods for semantic 3D reconstruction, our model is end-to-end trainable and captures more complex dependencies between the semantic labels and the 3D geometry. Compared to previous learning-based approaches to 3D reconstruction, we integrate powerful long-range dependencies using variational coarse-to-fine optimization. As a result, our network architecture requires only a moderate number of parameters while keeping a high level of expressiveness which enables learning from very little data. Experiments on real and synthetic datasets demonstrate that our network achieves higher accuracy compared to a purely variational approach while at the same time requiring two orders of magnitude less iterations to converge. Moreover, our approach handles ten times more semantic class labels using the same computational resources.

avg

pdf suppmat Project Page Video DOI Project Page [BibTex]

pdf suppmat Project Page Video DOI Project Page [BibTex]


no image
Separating Reflection and Transmission Images in the Wild

Wieschollek, P., Gallo, O., Gu, J., Kautz, J.

European Conference on Computer Vision (ECCV), September 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Simulation Based Online Planning

Schmid, K., Belzner, L., Kiermeier, M., Neitz, A., Phan, T., Gabor, T., Linnhoff, C.

KI 2018: Advances in Artificial Intelligence - 41st German Conference on AI, pages: 229-240, (Editors: F. Trollmann and A. Y. Turhan), Springer, Cham, September 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution

Gondal, M. W., Schölkopf, B., Hirsch, M.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), September 2018 (conference)

ei

arXiv URL [BibTex]

arXiv URL [BibTex]


no image
Discovering and Teaching Optimal Planning Strategies

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., Gul, S.

In The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


Thumb xl joeleccv18
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]


no image
Discovering Rational Heuristics for Risky Choice

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., Lieder, F.

The 14th biannual conference of the German Society for Cognitive Science, GK, The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (conference)

re

Project Page [BibTex]

Project Page [BibTex]


Thumb xl beneccv18
SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images

Coors, B., Condurache, A. P., Geiger, A.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Omnidirectional cameras offer great benefits over classical cameras wherever a wide field of view is essential, such as in virtual reality applications or in autonomous robots. Unfortunately, standard convolutional neural networks are not well suited for this scenario as the natural projection surface is a sphere which cannot be unwrapped to a plane without introducing significant distortions, particularly in the polar regions. In this work, we present SphereNet, a novel deep learning framework which encodes invariance against such distortions explicitly into convolutional neural networks. Towards this goal, SphereNet adapts the sampling locations of the convolutional filters, effectively reversing distortions, and wraps the filters around the sphere. By building on regular convolutions, SphereNet enables the transfer of existing perspective convolutional neural network models to the omnidirectional case. We demonstrate the effectiveness of our method on the tasks of image classification and object detection, exploiting two newly created semi-synthetic and real-world omnidirectional datasets.

avg

pdf suppmat Project Page [BibTex]


no image
From Deterministic ODEs to Dynamic Structural Causal Models

Rubenstein, P. K., Bongers, S., Schölkopf, B., Mooij, J. M.

Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI), August 2018 (conference)

ei

Arxiv link (url) [BibTex]

Arxiv link (url) [BibTex]


no image
Generalized Score Functions for Causal Discovery

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., Glymour, C.

Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages: 1551-1560, (Editors: Yike Guo and Faisal Farooq), ACM, August 2018 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming

Yurtsever, A., Fercoq, O., Locatello, F., Cevher, V.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5713-5722, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl teaser image
Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms

B Yigit, , Y Alapan, , Sitti, M.

Advanced Science, July 2018 (article)

Abstract
Collective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Lack of on-board computational and sensing capabilities in current microrobotic systems necessitates use of physical interactions among individual microrobots for local physical communication and cooperation. Here, we show that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, consisting of a linear chain of self-assembled magnetic microparticles, locomote on surfaces in response to a precessing magnetic field. Control over the direction of precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and parallel operation over macroscale distances (~ 1 cm). These microrobotic swarms can be guided through confined spaces, while preserving microrobot morphology and function. These swarms can further achieve directional transport of large cargoes on surfaces and small cargoes in bulk fluids. Described design approach, exploiting physical interactions among individual robots, enables facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order.

pi

link (url) [BibTex]


Thumb xl picture1
3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling

Hakan Ceylan, , I. Ceren Yasa, , Oncay Yasa, , Ahmet Fatih Tabak, , Joshua Giltinan, , Sitti, M.

bioRxiv, pages: 379024, July 2018 (article)

Abstract
Miniaturization of interventional medical devices can leverage minimally invasive technologies by enabling operational resolution at cellular length scales with high precision and repeatability. Untethered micron-scale mobile robots can realize this by navigating and performing in hard-to-reach, confined and delicate inner body sites. However, such a complex task requires an integrated design and engineering strategy, where powering, control, environmental sensing, medical functionality and biodegradability need to be considered altogether. The present study reports a hydrogel-based, biodegradable microrobotic swimmer, which is responsive to the changes in its microenvironment for theranostic cargo delivery and release tasks. We design a double-helical magnetic microswimmer of 20 micrometers length, which is 3D-printed with complex geometrical and compositional features. At normal physiological concentrations, matrix metalloproteinase-2 (MMP-2) enzyme can entirely degrade the microswimmer body in 118 h to solubilized non-toxic products. The microswimmer can respond to the pathological concentrations of MMP-2 by swelling and thereby accelerating the release kinetics of the drug payload. Anti-ErbB 2 antibody-tagged magnetic nanoparticles released from the degraded microswimmers serve for targeted labeling of SKBR3 breast cancer cells to realize the potential of medical imaging of local tissue sites following the therapeutic intervention. These results represent a leap forward toward clinical medical microrobots that are capable of sensing, responding to the local pathological information, and performing specific therapeutic and diagnostic tasks as orderly executed operations using their smart composite material architectures.

pi

DOI Project Page [BibTex]


no image
Blind Justice: Fairness with Encrypted Sensitive Attributes

Kilbertus, N., Gascon, A., Kusner, M., Veale, M., Gummadi, K., Weller, A.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2635-2644, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Detecting non-causal artifacts in multivariate linear regression models

Janzing, D., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2250-2258, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning-based solution to phase error correction in T2*-weighted GRE scans

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

1st International conference on Medical Imaging with Deep Learning (MIDL), July 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Mirage of Action-Dependent Baselines in Reinforcement Learning

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., Levine, S.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5022-5031, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

PDF link (url) Project Page [BibTex]

PDF link (url) Project Page [BibTex]