Header logo is


2018


Robust Physics-based Motion Retargeting with Realistic Body Shapes
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

2018


pdf video Project Page Project Page [BibTex]


no image
Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: A continuous multi-measure approach

Wirzberger, M., Herms, R., Esmaeili Bijarsari, S., Eibl, M., Rey, G. D.

Cognitive Research: Principles and Implications, 3:46, Springer Nature, 2018 (article)

Abstract
Schema acquisition processes comprise an essential source of cognitive demands in learning situations. To shed light on related mechanisms and influencing factors, this study applied a continuous multi-measure approach for cognitive load assessment. In a dual-task setting, a sample of 123 student participants learned visually presented symbol combinations with one of two levels of complexity while memorizing auditorily presented number sequences. Learners’ cognitive load during the learning task was addressed by secondary task performance, prosodic speech parameters (pauses, articulation rate), and physiological markers (heart rate, skin conductance response). While results revealed increasing primary and secondary task performance over the trials, decreases in speech and physiological parameters indicated a reduction in the overall level of cognitive load with task progression. In addition, the robustness of the acquired schemata was confirmed by a transfer task that required participants to apply the obtained symbol combinations. Taken together, the observed pattern of evidence supports the idea of a logarithmically decreasing progression of cognitive load with increasing schema acquisition, and further hints on robust and stable transfer performance, even under enhanced transfer demands. Finally, theoretical and practical consequences consider evidence on desirable difficulties in learning as well as the potential of multimodal cognitive load detection in learning applications.

re

DOI [BibTex]

DOI [BibTex]


no image
Attention please! Enhanced attention control abilities compensate for instructional impairments in multimedia learning

Wirzberger, M., Rey, G. D.

Journal of Computers in Education, 5(2):243-257, Springer Nature, 2018 (article)

Abstract
Learners exposed to multimedia learning contexts have to deal with a variety of visual stimuli, demanding a conducive design of learning material to maintain limitations in attentional resources. Within the current study, effects and constraints arising from two selected impairing features are investigated in more detail within a computer-based learning task on factor analysis. A sample of 53 students received a combination of textual and pictorial elements that explained the topic, while impaired attention was systematically induced in a 2 × 2 factorial between-subjects design by interrupting system-notifications (with vs. without) and seductive text passages (with vs. without). Learners’ ability for controlled attention was assessed with a standardized psychological attention inventory. Approaching the results, learners receiving seductive text passages spent significantly more time on the learning material. In addition, a moderation effect of attention control abilities on the relationship between interruptions and retention performance resulted. Explanations for the obtained findings are discussed referring to mechanisms of compensation, load, and activation.

re

DOI [BibTex]

DOI [BibTex]


no image
The Computational Challenges of Pursuing Multiple Goals: Network Structure of Goal Systems Predicts Human Performance

Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., Griffiths, T. L.

PsyArXiv, 2018 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
The moderating role of arousal on the seductive detail effect in a multimedia learning setting

Schneider, S., Wirzberger, M., Rey, G. D.

Applied Cognitive Psychology, Wiley, 2018 (article)

Abstract
Arousal has been found to increase learners' attentional resources. In contrast, seductive details (interesting but learning‐irrelevant information) are considered to distract attention away from relevant information and, thus, hinder learning. However, a possibly moderating role of arousal on the seductive detail effect has not been examined yet. In this study, arousal variations were induced via audio files of false heartbeats. In consequence, 100 participants were randomly assigned to a 2 (with or without seductive details) × 2 (lower vs. higher false heart rates) between‐subjects design. Data on learning performance, cognitive load, motivation, heartbeat frequency, and electro‐dermal activity were collected. Results show learning‐inhibiting effects for seductive details and learning‐enhancing effects for higher false heart rates. Cognitive processes mediate both effects. However, the detrimental effect of seductive details was not present when heart rate was higher. Results indicate that the seductive detail effect is moderated by a learner's state of arousal.

re

DOI [BibTex]

DOI [BibTex]


no image
Learning a Structured Neural Network Policy for a Hopping Task.

Viereck, J., Kozolinsky, J., Herzog, A., Righetti, L.

IEEE Robotics and Automation Letters, 3(4):4092-4099, October 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Rational metareasoning and the plasticity of cognitive control

Lieder, F., Shenhav, A., Musslick, S., Griffiths, T. L.

{PLoS Computational Biology}, 14(4):e1006043, Public Library of Science, 2018 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Over-representation of extreme events in decision making reflects rational use of cognitive resources

Lieder, F., Griffiths, T. L., Hsu, M.

Psychological Review, 125(1):1-32, 2018 (article)

re

[BibTex]

[BibTex]


no image
The Impact of Robotics and Automation on Working Conditions and Employment [Ethical, Legal, and Societal Issues]

Pham, Q., Madhavan, R., Righetti, L., Smart, W., Chatila, R.

IEEE Robotics and Automation Magazine, 25(2):126-128, June 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lethal Autonomous Weapon Systems [Ethical, Legal, and Societal Issues]

Righetti, L., Pham, Q., Madhavan, R., Chatila, R.

IEEE Robotics \& Automation Magazine, 25(1):123-126, March 2018 (article)

Abstract
The topic of lethal autonomous weapon systems has recently caught public attention due to extensive news coverage and apocalyptic declarations from famous scientists and technologists. Weapon systems with increasing autonomy are being developed due to fast improvements in machine learning, robotics, and automation in general. These developments raise important and complex security, legal, ethical, societal, and technological issues that are being extensively discussed by scholars, nongovernmental organizations (NGOs), militaries, governments, and the international community. Unfortunately, the robotics community has stayed out of the debate, for the most part, despite being the main provider of autonomous technologies. In this column, we review the main issues raised by the increase of autonomy in weapon systems and the state of the international discussion. We argue that the robotics community has a fundamental role to play in these discussions, for its own sake, to provide the often-missing technical expertise necessary to frame the debate and promote technological development in line with the IEEE Robotics and Automation Society (RAS) objective of advancing technology to benefit humanity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


no image
Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task

Wirzberger, M., Bijarsari, S. E., Rey, G. D.

Acta Psychologica, 179, pages: 30-41, Elsevier, 2017 (article)

Abstract
Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing.

re

DOI [BibTex]

2017


DOI [BibTex]


no image
Empirical Evidence for Resource-Rational Anchoring and Adjustment

Lieder, F., Griffiths, T. L., Huys, Q. J. M., Goodman, N. D.

Psychonomic Bulletin \& Review, 25, pages: 775-784, Springer, 2017 (article)

re

[BibTex]

[BibTex]


no image
Strategy selection as rational metareasoning

Lieder, F., Griffiths, T.

Psychological Review, 124, pages: 762-794, American Psychological Association, 2017 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
A computerized training program for teaching people how to plan better

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

PsyArXiv, 2017 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Toward a rational and mechanistic account of mental effort

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T., Cohen, J., Botvinick, M.

Annual Review of Neuroscience, 40, pages: 99-124, Annual Reviews, 2017 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
The anchoring bias reflects rational use of cognitive resources

Lieder, F., Griffiths, T. L., Huys, Q. J. M., Goodman, N. D.

Psychonomic Bulletin \& Review, 25, pages: 762-794, Springer, 2017 (article)

re

[BibTex]

[BibTex]

2006


no image
Dynamic Hebbian learning in adaptive frequency oscillators

Righetti, L., Buchli, J., Ijspeert, A.

Physica D: Nonlinear Phenomena, 216(2):269-281, 2006 (article)

Abstract
Nonlinear oscillators are widely used in biology, physics and engineering for modeling and control. They are interesting because of their synchronization properties when coupled to other dynamical systems. In this paper, we propose a learning rule for oscillators which adapts their frequency to the frequency of any periodic or pseudo-periodic input signal. Learning is done in a dynamic way: it is part of the dynamical system and not an offline process. An interesting property of our model is that it is easily generalizable to a large class of oscillators, from phase oscillators to relaxation oscillators and strange attractors with a generic learning rule. One major feature of our learning rule is that the oscillators constructed can adapt their frequency without any signal processing or the need to specify a time window or similar free parameters. All the processing is embedded in the dynamics of the adaptive oscillator. The convergence of the learning is proved for the Hopf oscillator, then numerical experiments are carried out to explore the learning capabilities of the system. Finally, we generalize the learning rule to non-harmonic oscillators like relaxation oscillators and strange attractors.

mg

link (url) DOI [BibTex]

2006


link (url) DOI [BibTex]


no image
Die Effektivität von schriftlichen und graphischen Warnhinweisen auf Zigarettenschachteln

Petersen, L., Lieder, F.

Zeitschrift f{\"u}r Sozialpsychologie, 37(4):245-258, Verlag Hans Huber, 2006 (article)

re

[BibTex]

[BibTex]


no image
Engineering Entrainment and Adaptation in Limit Cycle Systems – From biological inspiration to applications in robotics

Buchli, J., Righetti, L., Ijspeert, A.

Biological Cybernetics, 95(6):645-664, December 2006 (article)

Abstract
Periodic behavior is key to life and is observed in multiple instances and at multiple time scales in our metabolism, our natural environment, and our engineered environment. A natural way of modeling or generating periodic behavior is done by using oscillators, i.e., dynamical systems that exhibit limit cycle behavior. While there is extensive literature on methods to analyze such dynamical systems, much less work has been done on methods to synthesize an oscillator to exhibit some specific desired characteristics. The goal of this article is twofold: (1) to provide a framework for characterizing and designing oscillators and (2) to review how classes of well-known oscillators can be understood and related to this framework. The basis of the framework is to characterize oscillators in terms of their fundamental temporal and spatial behavior and in terms of properties that these two behaviors can be designed to exhibit. This focus on fundamental properties is important because it allows us to systematically compare a large variety of oscillators that might at first sight appear very different from each other. We identify several specifications that are useful for design, such as frequency-locking behavior, phase-locking behavior, and specific output signal shape. We also identify two classes of design methods by which these specifications can be met, namely offline methods and online methods. By relating these specifications to our framework and by presenting several examples of how oscillators have been designed in the literature, this article provides a useful methodology and toolbox for designing oscillators for a wide range of purposes. In particular, the focus on synthesis of limit cycle dynamical systems should be useful both for engineering and for computational modeling of physical or biological phenomena.

mg

link (url) DOI [BibTex]