63 results
(View BibTeX file of all listed publications)

**Unsupervised identification of neural events in local field potentials**
44th Annual Meeting of the Society for Neuroscience (Neuroscience), 2014 (talk)

**Single-Source Domain Adaptation with Target and Conditional Shift**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

**Quantifying statistical dependency**
Research Network on Learning Systems Summer School, 2014 (talk)

**Higher-Order Tensors in Diffusion Imaging**
In *Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data*, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

**Fuzzy Fibers: Uncertainty in dMRI Tractography**
In *Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization*, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

**Nonconvex Proximal Splitting with Computational Errors**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

**Causal Inference from Passive Observations**
24th Summer School University of Jyväskylā, Finland, August, 2014 (talk)

**Positional Oligomer Importance Matrices**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**An Automated Combination of Kernels for Predicting Protein Subcellular Localization**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration**
Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

**Policy Learning for Robotics**
14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

**Hilbert Space Representations of Probability Distributions**
2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

**Regression with Intervals**
International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

**Support Vector Machine Learning for Interdependent and Structured Output Spaces**
In *Predicting Structured Data*, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Brisk Kernel ICA**
In *Large Scale Kernel Machines*, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**MR-Based PET Attenuation Correction: Method and Validation**
Joint Molecular Imaging Conference, September 2007 (talk)

**Training a Support Vector Machine in the Primal**
In *Large Scale Kernel Machines*, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

**Approximation Methods for Gaussian Process Regression**
In *Large-Scale Kernel Machines*, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Trading Convexity for Scalability**
In *Large Scale Kernel Machines*, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Bayesian methods for NMR structure determination**
29th Annual Discussion Meeting: Magnetic Resonance in Biophysical Chemistry, September 2007 (talk)

**Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals**
In *Toward Brain-Computer Interfacing*, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Joint Kernel Maps**
In *Predicting Structured Data*, pages: 67-84, Advances in neural information processing systems, (Editors: GH Bakir and T Hofmann and B Schölkopf and AJ Smola and B Taskar and SVN Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach**
In *Toward Brain-Computer Interfacing*, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Collaborative Filtering via Ensembles of Matrix Factorizations**
KDD Cup and Workshop, August 2007 (talk)

**Thinking Out Loud: Research and Development of Brain Computer Interfaces**
Invited keynote talk at the Max Planck Society‘s PhDNet Workshop., July 2007 (talk)

**Local Learning Algorithms for Transductive Classification, Clustering and Data Projection**
Yahoo Inc., July 2007 (talk)

**Dirichlet Process Mixtures of Factor Analysers**
Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

**New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams**
Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

**Towards Motor Skill Learning in Robotics**
Interactive Robot Learning - RSS workshop, June 2007 (talk)

**Transductive Support Vector Machines for Structured Variables**
International Conference on Machine Learning (ICML), June 2007 (talk)

**Impact of target-to-target interval on classification performance in the P300 speller**
Scientific Meeting "Applied Neuroscience for Healthy Brain Function", May 2007 (talk)

**Probabilistic Structure Calculation**
In *Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond*, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

**New Margin- and Evidence-Based Approaches for EEG Signal Classification**
Invited talk at the FaSor Jahressymposium, February 2007 (talk)

**On the Pre-Image Problem in Kernel Methods**
In *Kernel Methods in Bioengineering, Signal and Image Processing*, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)