Header logo is


2020


AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning
AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning

Tallamraju, R., Saini, N., Bonetto, E., Pabst, M., Liu, Y. T., Black, M., Ahmad, A.

IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 5(4):6678 - 6685, IEEE, October 2020, Also accepted and presented in the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
In this letter, we introduce a deep reinforcement learning (DRL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory of body pose, and shape of a single moving person using multiple micro aerial vehicles. State-of-the-art solutions to this problem are based on classical control methods, which depend on hand-crafted system, and observation models. Such models are difficult to derive, and generalize across different systems. Moreover, the non-linearities, and non-convexities of these models lead to sub-optimal controls. In our work, we formulate this problem as a sequential decision making task to achieve the vision-based motion capture objectives, and solve it using a deep neural network-based RL method. We leverage proximal policy optimization (PPO) to train a stochastic decentralized control policy for formation control. The neural network is trained in a parallelized setup in synthetic environments. We performed extensive simulation experiments to validate our approach. Finally, real-robot experiments demonstrate that our policies generalize to real world conditions.

ps

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


no image
Transient coarsening and the motility of optically heated Janus colloids in a binary liquid mixture

Gomez-Solano, J., Roy, S., Araki, T., Dietrich, S., Maciolek, A.

Soft Matter, 16, pages: 8359-8371, Royal Society of Chemistry, August 2020 (article)

Abstract
A gold-capped Janus particle suspended in a near-critical binary liquid mixture can self-propel under illumination. We have immobilized such a particle in a narrow channel and carried out a combined experimental and theoretical study of the non-equilibrium dynamics of a binary solvent around it – lasting from the very moment of switching illumination on until the steady state is reached. In the theoretical study we use both a purely diffusive and a hydrodynamic model, which we solve numerically. Our results demonstrate a remarkable complexity of the time evolution of the concentration field around the colloid. This evolution is governed by the combined effects of the temperature gradient and the wettability, and crucially depends on whether the colloid is free to move or is trapped. For the trapped colloid, all approaches indicate that the early time dynamics is purely diffusive and characterized by composition layers travelling with constant speed from the surface of the colloid into the bulk of the solvent. Subsequently, hydrodynamic effects set in. Anomalously large nonequilibrium fluctuations, which result from the temperature gradient and the vicinity of the critical point of the binary liquid mixture, give rise to strong concentration fluctuations in the solvent and to permanently changing coarsening patterns not observed for a mobile particle. The early time dynamics around initially still Janus colloids produces a force which is able to set the Janus colloid into motion. The propulsion due to this transient dynamics is in the direction opposite to that observed after the steady state is attained.

icm

link (url) DOI [BibTex]

link (url) DOI [BibTex]


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, 39(5), August 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

project page pdf preprint DOI [BibTex]

project page pdf preprint DOI [BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 42(10):2540-2551, 2020 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

ps

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles
Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles

Singh, D., Domínguez, A., Choudhury, U., Kottapalli, S., Popescu, M., Dietrich, S., Fischer, P.

Nature Communications, 11(2210), May 2020 (article)

Abstract
Symmetry breaking and the emergence of self-organized patterns is the hallmark of com- plexity. Here, we demonstrate that a sessile drop, containing titania powder particles with negligible self-propulsion, exhibits a transition to collective motion leading to self-organized flow patterns. This phenomenology emerges through a novel mechanism involving the interplay between the chemical activity of the photocatalytic particles, which induces Mar- angoni stresses at the liquid–liquid interface, and the geometrical confinement provided by the drop. The response of the interface to the chemical activity of the particles is the source of a significantly amplified hydrodynamic flow within the drop, which moves the particles. Furthermore, in ensembles of such active drops long-ranged ordering of the flow patterns within the drops is observed. We show that the ordering is dictated by a chemical com- munication between drops, i.e., an alignment of the flow patterns is induced by the gradients of the chemicals emanating from the active particles, rather than by hydrodynamic interactions.

pf icm

link (url) DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

DOI [BibTex]

DOI [BibTex]


no image
Automatic Discovery of Interpretable Planning Strategies

Skirzyński, J., Becker, F., Lieder, F.

May 2020 (article) Submitted

Abstract
When making decisions, people often overlook critical information or are overly swayed by irrelevant information. A common approach to mitigate these biases is to provide decisionmakers, especially professionals such as medical doctors, with decision aids, such as decision trees and flowcharts. Designing effective decision aids is a difficult problem. We propose that recently developed reinforcement learning methods for discovering clever heuristics for good decision-making can be partially leveraged to assist human experts in this design process. One of the biggest remaining obstacles to leveraging the aforementioned methods for improving human decision-making is that the policies they learn are opaque to people. To solve this problem, we introduce AI-Interpret: a general method for transforming idiosyncratic policies into simple and interpretable descriptions. Our algorithm combines recent advances in imitation learning and program induction with a new clustering method for identifying a large subset of demonstrations that can be accurately described by a simple, high-performing decision rule. We evaluate our new AI-Interpret algorithm and employ it to translate information-acquisition policies discovered through metalevel reinforcement learning. The results of three large behavioral experiments showed that the provision of decision rules as flowcharts significantly improved people’s planning strategies and decisions across three different classes of sequential decision problems. Furthermore, a series of ablation studies confirmed that our AI-Interpret algorithm was critical to the discovery of interpretable decision rules and that it is ready to be applied to other reinforcement learning problems. We conclude that the methods and findings presented in this article are an important step towards leveraging automatic strategy discovery to improve human decision-making.

re

Automatic Discovery of Interpretable Planning Strategies The code for our algorithm and the experiments is available [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

pdf DOI poster link (url) DOI [BibTex]

pdf DOI poster link (url) DOI [BibTex]


no image
Advancing Rational Analysis to the Algorithmic Level

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E27, March 2020 (article)

Abstract
The commentaries raised questions about normativity, human rationality, cognitive architectures, cognitive constraints, and the scope or resource rational analysis (RRA). We respond to these questions and clarify that RRA is a methodological advance that extends the scope of rational modeling to understanding cognitive processes, why they differ between people, why they change over time, and how they could be improved.

re

Advancing rational analysis to the algorithmic level DOI [BibTex]

Advancing rational analysis to the algorithmic level DOI [BibTex]


no image
Learning to Overexert Cognitive Control in a Stroop Task

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

Febuary 2020, Laura Bustamante and Falk Lieder contributed equally to this publication. (article) In revision

Abstract
How do people learn when to allocate how much cognitive control to which task? According to the Learned Value of Control (LVOC) model, people learn to predict the value of alternative control allocations from features of a given situation. This suggests that people may generalize the value of control learned in one situation to other situations with shared features, even when the demands for cognitive control are different. This makes the intriguing prediction that what a person learned in one setting could, under some circumstances, cause them to misestimate the need for, and potentially over-exert control in another setting, even if this harms their performance. To test this prediction, we had participants perform a novel variant of the Stroop task in which, on each trial, they could choose to either name the color (more control-demanding) or read the word (more automatic). However only one of these tasks was rewarded, it changed from trial to trial, and could be predicted by one or more of the stimulus features (the color and/or the word). Participants first learned colors that predicted the rewarded task. Then they learned words that predicted the rewarded task. In the third part of the experiment, we tested how these learned feature associations transferred to novel stimuli with some overlapping features. The stimulus-task-reward associations were designed so that for certain combinations of stimuli the transfer of learned feature associations would incorrectly predict that more highly rewarded task would be color naming, which would require the exertion of control, even though the actually rewarded task was word reading and therefore did not require the engagement of control. Our results demonstrated that participants over-exerted control for these stimuli, providing support for the feature-based learning mechanism described by the LVOC model.

re

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Toward a Formal Theory of Proactivity
Toward a Formal Theory of Proactivity

Lieder, F., Iwama, G.

January 2020 (article) Submitted

Abstract
Beyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. But the extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to make the mechanisms and variability of proactivity more amenable to rigorous experiments and computational modeling. We proceed in three steps. First, we develop and validate a mathematically precise behavioral measure of proactivity and reactivity that can be applied across a wide range of experimental paradigms. Second, we propose a formal definition of proactivity and reactivity, and develop a computational model of proactivity in the AX Continuous Performance Task (AX-CPT). Third, we develop and test a computational-level theory of meta-control over proactivity in the AX-CPT that identifies three distinct meta-decision-making problems: intention setting, resolving response conflict between intentions and automaticity, and deciding whether to recall context and intentions into working memory. People's response frequencies in the AX-CPT were remarkably well captured by a mixture between the predictions of our models of proactive and reactive control. Empirical data from an experiment varying the incentives and contextual load of an AX-CPT confirmed the predictions of our meta-control model of individual differences in proactivity. Our results suggest that proactivity can be understood in terms of computational models of meta-control. Our model makes additional empirically testable predictions. Future work will extend our models from proactive control in the AX-CPT to proactive goal creation and goal pursuit in the real world.

re

Toward a formal theory of proactivity DOI Project Page [BibTex]


no image
Axisymmetric spheroidal squirmers and self-diffusiophoretic particles

Pöhnl, R., Popescu, M. N., Uspal, W. E.

Journal of Physics: Condensed Matter, 32(16), IOP Publishing, Bristol, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Tracer diffusion on a crowded random Manhattan lattice

Mej\’\ia-Monasterio, C., Nechaev, S., Oshanin, G., Vasilyev, O.

New Journal of Physics, 22(3), IOP Publishing, Bristol, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Wetting transitions on soft substrates

Napiorkowski, M., Schimmele, L., Dietrich, S.

{EPL}, 129(1), EDP Science, Les-Ulis, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Blessing and Curse: How a Supercapacitor Large Capacitance Causes its Slow Charging

Lian, C., Janssen, M., Liu, H., van Roij, R.

Physical Review Letters, 124(7), American Physical Society, Woodbury, N.Y., 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interplay of quenching temperature and drift in Brownian dynamics

Khalilian, H., Nejad, M. R., Moghaddam, A. G., Rohwer, C. M.

EPL, 128(6), EDP Science, Les-Ulis, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Fractal-seaweeds type functionalization of graphene

Amsharov, K., Sharapa, D. I., Vasilyev, O. A., Martin, O., Hauke, F., Görling, A., Soni, H., Hirsch, A.

Carbon, 158, pages: 435-448, Elsevier, Amsterdam, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Effective pair interaction of patchy particles in critical fluids

Farahmand Bafi, N., Nowakowski, P., Dietrich, S.

The Journal of Chemical Physics, 152(11), American Institute of Physics, Woodbury, N.Y., 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Cassie-Wenzel transition of a binary liquid mixture on a nanosculptured surface

Singh, S. L., Schimmele, L., Dietrich, S.

Physical Review E, 101(5), American Physical Society, Melville, NY, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Energy storage in steady states under cyclic local energy input

Zhang, Y., Holyst, R., Maciolek, A.

Physical Review E, 101(1), American Physical Society, Melville, NY, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Numerical simulations of self-diffusiophoretic colloids at fluid interfaces

Peter, T., Malgaretti, P., Rivas, N., Scagliarini, A., Harting, J., Dietrich, S.

Soft Matter, 16(14):3536-3547, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]

2015


Scalable Robust Principal Component Analysis using {Grassmann} Averages
Scalable Robust Principal Component Analysis using Grassmann Averages

Hauberg, S., Feragen, A., Enficiaud, R., Black, M.

IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), December 2015 (article)

Abstract
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.

ps sf

preprint pdf from publisher supplemental Project Page [BibTex]

2015


preprint pdf from publisher supplemental Project Page [BibTex]


{SMPL}: A Skinned Multi-Person Linear Model
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

pdf video code/model errata DOI Project Page Project Page [BibTex]

pdf video code/model errata DOI Project Page Project Page [BibTex]


Dyna: A Model of Dynamic Human Shape in Motion
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

ps

pdf preprint video data DOI Project Page Project Page [BibTex]

pdf preprint video data DOI Project Page Project Page [BibTex]


Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex
Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

Vargas-Irwin, C. E., Franquemont, L., Black, M. J., Donoghue, J. P.

Journal of Neuroscience, 35(30):10888-10897, July 2015 (article)

Abstract
Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. Significance Statement: The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way.

ps

publisher link DOI Project Page [BibTex]

publisher link DOI Project Page [BibTex]


no image
Coarsening in fluid phase transitions

Das, S., Roy, S., Midya, J.

Comptes Rendus Physique, 16(3):303-315, April 2015 (article)

Abstract
We review the understanding of the kinetics of fluid phase separation in various space dimensions. Morphological differences, percolating or disconnected domains, based on overall composition in a binary liquid or on density in a vapor–liquid system, are discussed. Depending upon the morphology, various possible mechanisms for domain growth are pointed out and discussions of corresponding theoretical predictions are provided. On the computational front, useful models and simulation methodologies are presented. Theoretically predicted growth laws have been tested via molecular dynamics simulations of vapor–liquid transitions. In the case of a disconnected structure, the mechanism has been confirmed directly.

icm

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Multi-view and 3D Deformable Part Models
Multi-view and 3D Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

Pattern Analysis and Machine Intelligence, 37(11):14, IEEE, March 2015 (article)

Abstract
As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal VOC 2007 [5], EPFL multi-view cars [6]).

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


{Spike train SIMilarity Space} ({SSIMS}): A framework for single neuron and ensemble data analysis
Spike train SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis

Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P., Black, M. J.

Neural Computation, 27(1):1-31, MIT Press, January 2015 (article)

Abstract
We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.

ps

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]


no image
Structures of simple liquids in contact with nanosculptured surfaces

Singh, S. L., Schimmele, L., Dietrich, S.

Physical Review E, 91(3), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface

Parisen Toldin, F., Tröndle, M., Dietrich, S.

Journal of Physics: Condensed Matter, 27(21), IOP Publishing, Bristol, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering

Uspal, W. E., Popescu, M. N., Dietrich, S., Tasinkevych, M.

Soft Matter, 11(3):434-438, Royal Society of Chemistry, Cambridge, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide

Mendes, R. G., Koch, B., Bachmatiuk, A., Ma, X., Sanchez, S., Damm, C., Schmidt, O. G., Gemming, T., Eckert, J., Rümmeli, M. H.

Journal of Materials Chemistry B, 3(12):2522-2529, Royal Society of Chemistry, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
A bio-catalytically driven Janus mesoporous silica cluster motor with magnetic guidance

Ma, X., Sanchez, S.

Chemical Communications, 51(25):5467-5470, Royal Society of Chemistry, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Sperm Dynamics in Tubular Confinement

Magdanz, V., Koch, B., Sanchez, S., Schmidt, O. G.

Small, 11(7):781-785, Wiley Online Library, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Chromatic patchy particles: Effects of specific interactions on liquid structure

Vasilyev, O., Klumov, B. A., Tkachenko, A. V.

Physical Review E, 92(1), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Monte Carlo study of anisotropic scaling generated by disorder

Vasilyev, O., Berche, B., Dudka, M., Holovatch, Y.

Physical Review E, 92(4), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Fluctuations and diffusion in sheared athermal suspensions of deformable particles

Gross, M., Krüger, T., Varnik, F.

EPL, 108(6), IoPP, Bristol, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Enzyme-Powered Hollow Mesoporous Janus Nanomotors

Ma, Xing, Jannasch, Anita, Albrecht, Urban-Raphael, Hahn, Kersten, Miguel-Lopéz, Albert, Schäfer, Erik, Sanchez, Samuel

Nano Letters, 15(10):7043-7050, American Chemical Society, Washington, DC, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interaction between colloidal particles on an oil\textendashwater interface in dilute and dense phases

Parolini, L., Cicuta, A. D. P., Law, A. D., Maestro, A., Buzza, M. A.

Journal of Physics: Condensed Matter, 27(19), IOP Publishing, Bristol, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Anomalous Magnetotransport in Disordered Structures: Classical Edge-State Percolation

Schirmacher, Walter, Fuchs, Benedikt, Höfling, Felix, Franosch, Thomas

Physical Review Letters, 115, American Physical Society, Woodbury, N.Y., 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


Metric Regression Forests for Correspondence Estimation
Metric Regression Forests for Correspondence Estimation

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

International Journal of Computer Vision, pages: 1-13, 2015 (article)

ps

springer PDF Project Page [BibTex]

springer PDF Project Page [BibTex]


no image
Precise Localization and Control of Catalytic Janus Micromotors using Weak Magnetic Fields

Khalil, I. S., Magdanz, V., Sanchez, S., Schmidt, O. G., Misra, S.

International Journal of Advanced Robotic Systems, 12, InTech, Rijeka, Croatia, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Nano-photocatalysts in microfluidics, energy conversion and environmental applications

Parmar, J., Jang, S., Soler, L., Kim, D., Sánchez, S.

Lab on a Chip, 15(11):2352-2356, Royal Society of Chemistry, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Static dielectric properties of dense ionic fluids

Zarubin, G., Bier, M.

The Journal of Chemical Physics, 142(18), American Institute of Physics, Woodbury, N.Y., 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Chemically Powered Micro-and Nanomotors

Sánchez, S., Soler, L., Katuri, J.

Angewandte Chemie, International Edition, 54(5):1414-1444, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015 (article)

icm

[BibTex]

[BibTex]


no image
Convergence of large-deviation estimators

Rohwer, C. M., Angeletti, F., Touchette, H.

Physical Review E, 92(5), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Geometrically Tuned Channel Permeability

Malgaretti, P., Pagonabarraga, I., Rubi, J. M.

Macromolecular Symposia, 357(1):178-188, WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Critical Casimir forces between planar and crenellated surfaces

Troendle, M., Harnau, L., Dietrich, S.

Journal of Physics: Condensed Matter, 27(21), IOP Publishing, Bristol, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Theory of rheology in confinement

Aerov, A. A., Krüger, M.

Physical Review E, 92(4), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]